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ABSTRACT 

The method of matched asymptotic expansions is introduced a s  a systematic 

approach to the problem of analytically describing flight trajectories.  Both new and 

previously known solutions in flight mechanics a r e  produced in an unified procedure 

that is capable of estimating their region of validity, extending the solution to higher 
accuracy, and combining the solutions to obtain expressions valid over s eve ra l  reg- 

ions of interest .  

Specifically, all the f i r s t  approximations to the flight dynamic equations a r e  

identified and their  region of validity is established. Asymptotic expansions for the 

solutions of the dynamic equations a r e  produced for a number of regions. The 
analyses of Sanger (9 '  lo4), Allen and Eggers"), Chapman(14), Lees(7),  Shen (28) 

a r e  all shown to be systematic approximations within this context. 

which Loh's ( 2 9  35) analysis can be considered systematic is demonstrated and i ts  

region of validity is identified. 

o rde r  and greater  accuracy is illustrated. 

produce a composite solution valid for a currently interesting class of lifting t ra jec-  

tor ies .  

The extent to 

A procedure f o r  extending these solutions to higher 

Two of the expansions a r e  matched to 

Analytical investigation of some optimal flight t ra jector ies  is accomplished, 

Cbservations a r e  made concerning the structure of optimal plane change, minimum 

velocity lost, maximum range, and minimum heating t ra jector ies .  The advantages 

of uniformly valid analytical solutions for guidance applications a r e  ennumerated 

and possible implementations in guidance schemes a r e  suggested. 
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CHAPTER I 

INTRODUCTION 

1.1 - Scope of Thesis  

The method of matched asymptotic expansions has  recently emerged as a 

highly systematic means of treating nonlinear prblems in which a small pa rame te r  

appears .  It has  been extensively used in the field of fluid mechanics“’ 4’ 12’ 57)and 
recently in a number of problems in celestial  mechanics. (64? 6 6 P  67, 70) This thesis 

is the natural  extension of the previous uses  of the method into the a r e a  of entry 

dynamics and hypervelocity flight mechanics. 

1. 2 Analytical Flight Mechanics 

In analytical flight mechanics, as in many other problems, one is faced with 

a set of dynamic equations much too complicated to solve in any generalized sense.  

The central  problem then is one of approximating, o r  modeling, the m o r e  complex 

system in t e r m s  of s impler  systems.  Hopefully, the simpler system gives insight 

into the dynamics of the m o r e  complex system over some limited region of 

operation. 

flight dynamic s (37 ’  47) and more  recently in the dynamics of atmospheric entry or 
(2,7,8, 9, 10, 11, 14, 33, 38) hypervelocity flight. 

The re  a r e  many fine examples of this type of endeavor in both classical  

A common character is t ic  of all such analyses is  that they have a limited 

range of validity. 
(7’ * ’  9’ l o ’  

the original work is extended to some a r b i t r a r y  degree of accuracy. 

f r o m  one region of flight, where a particular analysis is  valid, to another region where 

another analysis is valid is  awkward if at all possible.  

simple answers ,  if not always solutions, in the context of the method of matched 

asymptotic expansions. 

1 .  3 The Method of Matched Asymptotic Expansions 

This has usually been carefully pointed out by the analyst. 

33’ 3 8 )  A further complication is that i t  is generally not obvious how 

Also transitioning 

All of these problems have 

The most  naive fo rm of the method of matched asymptotic expansions will 

F o r  an elaborate and enlighting treatment,  the s e r v e  the purposes of this thesis .  

r eade r  is r e fe r r ed  to Van Dyke”). The approach that will be taken h e r e  is  to seek 

a valid first approximation to the dynamic equations of flight. 

a r e  then assumed to  only cause linear perturbations in a solution to the valid f i r s t  

approximation. 

been determined, d l  succeeding corrections a r e  simply linear perturbation problems. 

Small  neglected terms 

So that once the lowest o rde r  problem, o r  f i r s t  approximation, has  

- 1 -  



The solution can then, in principle, be extended to any o rde r  to include all small 

effects. 

turbation problems is called an expansion for  the solution of the complete problem. 

The f i r s t -o rde r  solution and the solution to all the associated l inear p e r -  

Some care must be taken in determining the valid first approximation. 

approximation is basically different depending on the values of the problem variables 

that appear.  

considering all possible values of the problem's variables measured in powers of 

the problem's small  pa rame te r s .  T e r m s  that may be neglected will then appear 

multiplied by some power of the small pa rame te r .  The f i r s t ,  o r  lowest o rde r ,  

approximation f o r  a particular range of values of the variables is obtained by sim- 

ply retaining non-negligible t e r m s .  

perturbations to the lowest order  solution. 

factor that allows division of the variable,  o r  s ta te ,  space of the dynamic system 

into different regions of behavior in which different expansions a r e  valid. 

two expansions, valid in two neighboring regimes,  have been obtained they may be 

combined by simply requiring that they match smoothly in the region of their  com- 

mon boundary. 

This 

All such f i r s t  approximations may be systematically ennumerated by 

The neglected t e r m s  a r e  then included as l inear 

So, small  pa rame te r s  f o r m  a scale 

After 

The attempt will be to place previous work in flight mechanics in th i s f r ame-  

work of systematic approximation. This will allow a careful delineation of the 

range of validity and accuracy of existing solutions. It will a lso offer a straightfor- 

ward method of improving the solutions by extending them to higher o r d e r ,  Solutions 

uniformly valid over a number of regions, suitable fo r  guidance applications,will be 

produced by matching the expansions. 

modeling the optimal t ra jectory problems will be accomplished by simply retaining 

only the lowest order  problem in which the control appears .  A tracticable analyti- 

ca l  problem will often be produced. 

duced with a straight-forward application of a well established perturbation technicp 

in a n  area in which analytical p rog res s  in the past  has  been difficult. 

1 . 4  The Flight Environment 

Finally, the difficult task of analytically 

Thus, many interesting resul ts  will be pro- 

This thesis will deal with the analytical description of flight paths for  a 

vehicle under the influence of gravity, acceleration, aerodynamic forces  and thrust ,  

constrained by limits on gas dynamic heating and vehicle specific force.  

initiating this analysis, a brief description of the flight environment is in o rde r .  

P r i o r  to 

1 .4 .  1 The Planetary Atmospheres 

The atmosphere is  considered to be a multicompoilelii, gas of relative uniform 

Its motion is predomi- composition over the altitudes of interest  in flight dynamics. 
nantly that of rotation with the planet with a small  superimposed horizontal wind 

s t ructure .  

cribed in t e r m s  of a momentum o r  force balance in the ver t ical  direction (where the 

wind components a r e  negligible) 

I ts  interaction with the planet's gravitational field is conveniently des-  

. -  

t 



(1 .4 .1 -1 )  

p and p a r e  the atmospheric pressure  and density and g i s  the acceleration of 

gravi ty  in the planet's rotating coordinate system. 

The p res su re  and density are conveniently related to a tmospheric  tempera-  

t u re ,  T, by the equation of state  of a relatively low density gas 

(1 .  4. 1-2) 

where is the universal  gas constant and m is the molecular weight of the 

The temperature  has  smal l  but important variation with both position 

' 

uniform gas.  

and altitude; s imilar ly  & var ies  with 5. 
moment allows Eqs. (1. 4. 1-1) and (1.  4. 1-2)  to be combined to give an  expression 
fo r  p o r  p 

The neglect of these variations for  the 

as a function of height. 

or 
(1. 4. 1-3) 

( 1 . 4 .  1-4) 

where h is altitude above the sur face  of the planet and P o  is the reciprocal  

a tmospheric  scale  height defined a s  

(1 .  4. 1-5) 

I t  is observed that the rat io  of atmospheric scale  height to planetary radius  is a 

small number for  all known planetary atmospheres .  (See Table 1.) 
that  p and p 
the planetary radius .  

the planet. The rat io  of atmospheric sca le  height to planetary radius is a smal l  

parameter  that  will  be a n  important scaling factor in the flight dynamic problem. 

For convenience it will be hereafter r e fe r r ed  to a s  E (or  in Chap. IV as E l ) .  

This implies 

vary  many o rde r s  of magnitude over a height small in comparison with 

The atmosphere i s  thus a relatively thin shell  surrounding 

- 3 -  
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436 f. (1.  4. 1-6) 

F o r  a more adequate treatment of planetary atmospheres the reader  is 

r e fe r r ed  to Appendix E and References (16,83). 

The fundamental physical significance of a small  E may be obtained by a 

slight rearrangement of its definition 

(1 .  4. 1-7) 

where k is the Boltzmann constant and m is the mass of a typical g a s  mole- 
The quantity kTo represents  the thermal  energy of a molecule while mg r cule. 

is the energy required for a molecule a t  the planet's radius to escape the planet's 

gravitational field. It is therefore necessary for the retention of the atmosphere,  

that E be small. 

0 0  

* 

1 .  4. 2 The Gravitational Field 

A planet's gravitational field in a rotating coordinate system fixed to the 

planet is adequately described by the negative gradient of a potential, expressed in 

t e r m s  of spherical harmonics and corrected for planet's rotation, as 

( 1 .  4 . 2 - 1 )  

where g is the gravitational acceleration vector, V the potential field, G 

the universal gravitional constant, M the mass of the planet, 5 a position 

vector,  r the equatorial radius,  L the planetary latitude, R the planet's 

rotation r a t e  and J 2  the second-harmonic coefficient (see Appendix D) .  
0 

Normally, i t  will be necessary to retain more  than the f i rs t  t e rmin  this .ser ies ,  the . 
spherically symmetric inverse r field, but usually no more  than the second term.  
* ~ 

This interesting observation was pointed out to the author by Prof.. A. E.  Bryson 

- 4 -  



This is because atmospheric flight occurs a t  altitudes small  in comparison to the 

planetary radius where the second term is not necessar i ly  negligible. 

planetary oblateness causes a warping of the thin atmospheric shell  that is of the 

same o rde r  of magnitude as the thickness of the atmosphere.  

major  contribution to variations of atmospheric propert ies  with r is due to the 

planetary oblateness. 

Also, the 

This implies that the 

1.4.3 Aerodynamic F o r c e s  

By convention, aerodynamic forces  a r e  resolved into two components, d rag  

and lift,  along and normal  to an air mass  referenced velocity vector.  

expressed in t e r m s  of nolidimensional coefficients, CD, and CL' as, 

They a r e  

(1. 4. 3-1) 

where D and L a r e  drag and lift, A is some suitable reference a r e a ,  and v 

and C L D 

- 
is the vehicle velocity referenced to the air mass. 

Mach number, M, and Reynolds number, Re,  

C a r e  functions of the 

kc p tYt  
P 

(1. 4. 3-2) 

(1.4.3-3) 

where c is the speed of sound in the atmospheric gas,  p is the viscosity 

coefficient, 

previously defined quantities a s  

is some a r b i t r a r y  reference length. The speed of sound is related to 

(1.4.3-4) 

where 7 is the ratio of specific heats and R is the g a s  constant of the atmos-  - -  
pheric gas,  where R R /m. 

Basically, the Mach number dependence of the aerodynamic coefficient is 
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related to compressibility and the Reynolds number dependence is related to vis- 

cosity, 

depending oil the g a s  dynamic regimes in which flight is being conducted. 

cription of these regimes follows. 

The functional dependency of CL and CD on M and Re differs markedly 

A des-  

1 . 4 . 4  Gas Dynamic Regimes 

A vehicle encountering a planetary atmosphere will pas s  through seve ra l  gas  

dynamic regimes depending predominately on the ratio of the vehicle velocity, v, to 

the speed of sound, c (approximately the mean ll thermalll  velocity of the gas  mole- 

cules).  This ratio, the Mach number, may be written as 

- 

K H -  - 
V Z Z  

(1. 4. 4-1) 

where 7 is the ratio of specific heats for the atmospheric gas.  This may be 

rewrit ten in t e rms  of the inverse atmospheric scale height and planetary radius as 

(1. 4. 4-2) 

If one observes that the quantity- is orbital  velocity and; is of order  one for  
all gases,  then Eq. (1 .  4. 4-2) indicates that the Mach number is high for  vehicles 

with velocities the o rde r  of orbital  velocity in any planetary atmosphere.  

ratio of velocity to orbital  velocity is of o rde r  E 2 ,  the Mach number is of order  one, 
and when this ratio is of order  E , the Mach number is of o rde r  E 2 .  

When the 
1 - 

- 

It is well known that t he re  are fundam-entally different gas dynamic regimes 

associated with high, intermediate, and low Mach numbers.  It will la ter  be shown that 

the dynamic behavior of the f l ight  vehicle divides into three analogous regimes,  also 

dependent on the value of the Mach number.  
dynamic regimes follows. 

with which this thesis is  mainly concerned, the r eade r  is r e fe r r ed  to References 

(49, 95, 96). 

A cur so ry  description of the gas  

F o r  a n  adequate treatment of the hypersonic flow regime, 
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(1) 
At appreciable distances f rom the planet's surface,and therefore  

F r e e  Molecular Flow Regime :l; 

at very low densit ies,  the vehicle's encounters with g a s  molecules 

and atoms a r e  relatively infrequent, The molecules a r e  either reflected 

o r  accommodated by the vehicle wi.th a resultant exchange of momentum. 

Then g a s  par t ic les  do not encounter other g a s  particles at  distances of 

the o r d e r  of the vehicle 's  dimension a s  their  mean f r e e  path is long. 

The vehicle thus continuously meets  an undisturbed s t r e a m  of molecules 

with mean velocity equal to the vehicle velocity relative to the atmosphere.  

The aerodynamic force,  due to the momentum exchange with the mole- 
cular s t r eam,  is relatively smal;. because of the low encounter ra te ,  

they a r e  large enough, over an appreciable period of time, to cause orbital  

decay. 

But 

( 2 )  Continuum Hypersonic Flow Regime 

As  the density increases,  molecules reflected and emitted 

f r o m  the surfa.ce of the vehicle encounter other molecules a t  distances 

relatively close to the vehicle. 

high density cloud of molecules fo rms  on the iront side of the vehicle. 

The re  is an appreciable mornenturn t r ans fe r  to the vehicle that is basic- 

ally due to the increase in number density of the flow, 

molecular flow and the hypersonic flow regimes the aerodynamic forces  

on the vehicle are  dominantly functioxs of the momer,tum transport  of 
2 the f r e e  s t r eam,  pv . 

as 

A rather  low velocity and consequently, 

In both the f r e e  

The aerodyEamic coefficients C L  and CD, defined 

(1.4.4-3) 

vary  relatively little with Mach number and Reynolds number. 

( 3 )  Supersonic, Transonic and Subsonic Flow Regime 

AS the vehicle loses kinetic energy, and thus velocity due to 

aerodynamic drag,  the velocity of the vehicle becomes of the same  

o r d e r  as the mean the rma l  speed of the gas molecules.  

ity range the aerodynamic forces a r e  sensitive to the type of wave 

pattern being caused by the reflected molecules in the undisturbed 

s t r eam.  

tive to the air mass ,or  the Mach number.  

long mean f r e e  paths and not necessar i ly  with any particular velocity regime. 

In this veloc- 

Thus C L  and CD a r e  very sensitive to the vehicle speed rela-  

*It should be observed that f r e e  molecular flow is associated with 

A vehicle predomina.ntly 
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designed for hypersonic flow, where blunt vehicles are of no par t icular  
disadvantage, encounters a par t icular  high wave drag.  

(4) Cons tad  Density Flow Regime 
When the velocity of the vehicle becomes slow, relative to the 

thermal  speed of the molecules,  disturbances a r e  propagated upstream 

at velocities la rge  in comparison to the velocity of the vehicle. The 

gas then behaves a s  though it was a constant density fluid,so CL and 

CD a r e  not M dependent. 

a r e  usually la rge  for  hypersonically designed vehicles with a blunt r e a r  

end. Fur ther ,  l if t-drag rat ios  a r e  low because of the usual  low-aspect- 

ratio design of the vehicle. 

importance if  the vehicle is to be landed. 

1 .4 .  5 Aerodynamic and Thrus t  Load Fac tor  

While a vehicle is in f r e e  fa l l  under the influence of only gravity there  is no 

When the vehicle is subjected to either aerodynai 

To preclude 

Drag due to viscosity and separation effects 

These considerations take on considerable 

accelerat ion sensed by the pilot. 

mic o r  thrusting acceleration the pilot i s  accelerated proportionately. 

excessive loads on the pilots and/or  equipment in a spacecraft ,  entry t ra jector ies  

must  be constrained to keep this combined aerodynamic and thrust  acceleration 

within cer ta in  limits. 

F o r  the equipment there  is usually some design load factor that must  not be 

exceeded. F o r  a human pilot, t he re  is a more  complex limitation. Depending on 

his  orientation, his physical condition, and the task that he has  to perform,  he can 

generally accept a given loading for  a specified t ime. 

shor te r  i s  the duration of t ime it i s  acceptable. However, in the present  analysis,  

it will  normally be assumed,for analytical  convenience,that the t ra jectory is cons- 

t ra ined to keep the load factor  below a fixed l imit .  

The higher the loading the 

1.4.  6 Aerodynamic Heating 

A vehicle moving at high velocit ies relative to a gas  will  experience appreci-  

Fortunately, able t ransfer  of the kinetic energy of the gas molecules to the vehicle. 

there  a r e  a number of mechanisms that preclude the complete t ransfer  of all the 

energy of the gas  s t r eam to the vehicle. 

other  molecules that a r e  reflected o r  emitted f rom the vehicle. 

intensely dense layer of gas  molecules with low mean velocity relative to the 

vehicle (a "gas cap" in back of a near ly  normal  shock). 

cap have high thermal  velocity, as energy i s  initially conserved. Energy is diss i -  

pated in this  gas cap by a number of means.  The gas  molecules,  undergo numer- 
ous and violent collisions with other molecules. This excites internal energy modes 

to the point of dis-ciating and ionizing the gas (breaking the gas molecules into its 

constituent a toms and stripping the electrons f r o m  the remaining atoms) .  

Most of the incoming molecules encounter 

These form an  

The molecules in the gas 

The hot 
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gas  emits  photon energy (radiation),  unfortunately nearly half of it toward the vehi- 

c le ,  but the other  half into f r e e  space. 

the gas  cap around the vehicle and into a wake. 

ded in the heavily excited gas  away from the vehicle. 

Finally,  there  i s  a mean flow of the gas  in 
This t ranspor t s  the energy imbed- 

The methods of protecting the vehicle f rom that portion of the energy that 

does eventually reach it may be divided into three  categories:  

(1) Ablation 

The exter ior  of the vehicle that i s  subjected to the intense heat is 

covered with an expendable coat of mater ia l  that e i ther  mel ts  o r  sublimes,  

absorbing the energy input f rom the gas ,  and simultaneously dumping the 

hot products into the wake. 

( 2 )  Reradiation 

The exter ior  of the vehicle is designed to accept some ra ther  

high tempera ture  where the energy input can be reradiated into f r e e  space.  

(3) Heat Sink 

The vehicle is designed to accept the energy input which i t  might 

attempt to s tore  for  a short  period o r  t ransfer  to the wake by dumping 

coolant . 
A given vehicle usually uses  a l l  th ree  methods to some extent. But depend- 

ing on whether i t  i s  dominantly reradiative o r  ablative cooled the t ra jectory must  

be  designed to e i ther  not exceed some heating ra te  associated with the vehicle 's  

allowable surface temperature  o r  to not exceed some maximum allowable total  heat. 

F o r  the purpose of estimating energy input to a vehicle, in convective and 

radiative fo rms ,  one can use empir ica l  relations of the following fo rm (See 

Appendix E) 

(1 .4 .  6-1) 

where Qis  a heating ra te  and CQ is a geometry dependent heating coefficient. 

The exponents (i and j) a r e  functions of the gas and unfortunately somewhat sensit ive 
to the par t icular  empir ical  investigation. 

values of the exponents will  be  unimportant. 

F o r  analytical  purposes here ,  the exact 
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PRECEDING PAGE BLANK NOT FILMED. 

CHAPTER I1 

THE DYNAMICS OF TWO-DIMENSIONAL NONTHRUSTING FLIGHT 
Y 

; -  

2 .  1 Introduction 

It is the objective of the present  investigation to study the dynamics of flight 

To preclude overbear-  in  a real rotating atmosphere surrounding an oblate planet. 

ing complexity f r o m  the s t a r t ,  it will be convenient to consider a problem commonly 

treated in the l i terature  of entry dynamics o r  hypervelocity flight mechanics: Non- 

thrusting two-dimensional flight in a nonrotating atmosphere surrounding a spheric-  

a l ly  symmetr ic  planet. 

complex problem to lowest and sometimes to next order .  

made to pursue higher-order  solutions but only to the extent that they will  be unef- 

fected by the addition of oblateness and rotating atmosphere effects. 

tion for  this simple approach will  follow in Chapter IV. 

In the analysis of the two-dimensional problem, the technique will be to 

This analysis will produce the same  resul t  as the more  

Some efforts will  be 

The justif ica- 

identify the lowest-order problems that descr ibe different phases of a flight t ra jec-  

tory.  

These regimes will  be f i r s t  produced in  an ad hoc manner,to both develop solutions 

that will  later be used,and to give insight into a systematic  procedure for  identify- 

ing all such regimes.  

These lowest o rde r  problems will  be descriptively called regimes of flight. 

Two techniques of combining expansions will  be given. 

method that comes f rom considerable famil iar i ty  with the expansions. 

involves finding a solution that reduces to the proper lowest o rde r  form in a number 

of regimes.  

ing expansions. 

2. 2 

One is an intuitive 

It basically 

The other  method is analytically straightforward and involves match- 

It will  be t reated in Chapter 111. 

The Dynamical Equations for  Two Dimensional Nonthrusting Flight 

The dynamical equations,which descr ibe two dimensional nonthrusting flight, 

through a nonrotating atmosphere,  surrounding a spherically symmetr ic  planet, can 

be writ ten in nondimensional fo rm as  follows: 

- 11 - 
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where 

(2. 2-2) 

I 

(2 .  2-3) 

(2. 2-4) 

(2. 2-5) 

The following dimensional and nondimensional quantities have been used: 

- velocity magnitude/r ef e renc e orbi ta l  
velocity . 

- t ime /orbital  period 

- height above reference radius / reference 
radius  

- reference radius 
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- gravitational acceleration /gravitational 
acceleration 

- inverse  scale  height 

- inverse  scale  height / reference inverse 
scale  height 

- reference scale  height / reference radius 
(a small quantity) 

- nondimensional density 

- p r e s s u r e  /wing 

The other quantities a r e  defined in Fig. (2.  2-1) and in 

loading 

the List  of Symbols. 

The f i r s t  two equations a r e  obtained f r o m  an acceleration and force balance 

along and normal  to the flight path. 

tion expressing altitude and range rate in t e r m s  of velocity and flight path angle. 

The final equation is the hydrostatic equation relating pressurevariations with alt i-  

tude in the atmosphere.  

The second two equations a r e  kinematic re la-  

P r e s s u r e  and density a r e  related by the equation of s ta te  fo r  a low density 

gas.  

o r  in nondimensional f o r m  

( 2 .  2-6) 

( 2 . 2 - 7 )  
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velocity vector - v> 

f i  y - flight path angle 

-11' - height F above reference radius 

Fig 2 .2 -1  Geometry of Two Dimeneional Flight 
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A s  t ime only appears  in the equations in the f o r m  of derivatives,  it may be 

conveniently eliminated by dividing Eqs. (2 .  2-1- 3) by Eq. (2 .  2-4). 

s e t  of dynamic equations in the independent variable h and dependent var iab les  

v2, p, y as follows: 

This gives a new 

9, 

C 

( 2 .  2 - 9 )  

(2.2-10) 

( 2 .  2- 11) 

The final equation, Eq .  (2 .  2- I l ) ,  i s  s t r ic t ly  not a dynamic equation by s im-  

By keeping the rela- ply a differential equation specifying the variation of p with h.  

tion in this form,  it will be possible to obtain resul ts  f o r  an atmosphere of a rb i t r a ry  
temperature  o r  variation with h.  

2 .  3 Scaling the Dynamical Equations 

A formalism that i s  essential to the success  of the perturbation method to  

be applied h e r e  i s  the proper  scaling of the var iables .  

dimensional f o r m  must  have a l l  i ts  nondimensional variables of o r d e r  one if the 

perturbation scheme i s  to succeed. Thus,  Eqs .  ( 2 .  2 - 8  - 11)  a r e  satisfactory for  

flight where: 

a r e  the o rde r  of one radian; ( 3 )  pres su res  a r e  the o r d e r  of the wiiig loadii,g, aiid 
(4 )  heights 

obvious conflict. It i s  instructive, however, to proceed naively aiid s e e  the anomaly 

that resu l t s .  

Any equation written in non- 

(1)velocities a r e  the order of orbi ta l  velocities; ( 2 )  flight path aiigles 

a r e  the o r d e r  of the orbital radius .  Statements ( 3 )  and (4) above a r c  in 
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2 . 4  The Keplerian Regime 

It a solution to the dynamic equations, Eqs .  (2 .  2-8  - l l ) ,  is sought in the 

form of a straight forward perturbation expansion, by expression the dependent v a r -  

iables in a power se r i e s  i n €  

( 2 .  4-1)  J 

(2 .  4-2) 

( 2 . 4 - 3 )  

then, when Eq. (2.  4-4) and Eq. (2 .  2-7) a r e  substituted into Eq. (2.  2-11) and t e r m s  

of equal o r d e r s  in E are equated, the following sequence results:  

( 2 . 4 - 5 )  

(2 .  4-6) 

( 2 . 4 - 7 )  

Obviously, the only solution to this sequence is p(n) = 0 fo r  all o rde r s  and 

This is a singular therefore  the perturbation solution to this problem is p(h) = 0 .  
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perturbation problem, because a straight forward perturbation expansion to a rb i t ra -  

r i ly  high o rde r  can never  predict  the effect of the sma l l  quantity correct ly .  

As p(h) = 0 ,  substituting Eqs. (2 .4-1 - 5) into Eqs .  (2 .  2-8 - 11) gives, to 

the lowest o rde r  in E , 

(2.4-8) 

(2.4-9) 

(2 .4-  10) 

These a r e  c lear ly  the equations for  describing motion in Keplerian conics.  

The solutions given h e r e  for future reference a r e  

c o s  a 

(2 .4-11)  

(2. 4-12) 

(2. 4-13) 

where the usual constants of integration, the semi-major  axis ,  a ,  the angular mo- * mentum, 6, and the eccentricity,  e ,  have been introduced. F o r  convenience, it 

has been assumed that 8 = 0 a t  Y = 0 .  The equations co r rec t  to next o rde r  in E a r e  

* 
F o r  convenience, r = 1 t h has  a lso been used. 

\ 
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0 0 0 

0 

( 2 .  4-14) J 

The integralsto these equations a r e  easily produced in t e r m s  of the solutions 

to the lowest order problem ( see  Appendix C).  

aerodynamic force, does not enter in these equations, the solutions a r e  simply the 

perturbation solutions about Keplerian conics. 

variation of Eqs. ( 2 .  4-11 - 13). 

and independent variable in the solutions given in Eqs. ( 2 .  4-13-14) has disappeared. 

In fact, any one of the variables N , , 6 , o r  h may be considered to be the 
independent variable with the remaining th ree  variables considered the dependent 

variable.  

i l lustrate this point, variations of all variables will be taken. 

Because the small  quantity, the 

They a r e  obtained by taking the 

Notice that the distinction between the dependent 

This is  a common occurrence with solutions of nonlinear equations. To 

( 2 .  4-15) 

( 2 .  4- 17) 

O r  in ma t r ix  form as 
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. 

cos Q 

0 

0 

(2.4-18) 

where superscr ipts  have been dropped for  convenience. 

To obtain the solution to Eq. (2.  4- 14), r must be considered the independent 

variable with 6 r and 6 ro equal to zero. 

t o  give the perturbation 6v ,  6cosY, and 6 8  in t e r m s  of their  initial values. 

then finally observed that these perturbations a r e  the solutions to Eq. (2 .4-  14) 

Spec if  ically , 

The above equations can then be inverted 

tt is 

( 2 .  4-19) 

That t--e solutions to L e  perturbation equations a r e  re la tec  to the solutions 

of the lowest o r d e r  problem in this simple manner has  been known since the t ime 

of Laplace, but is evidently not widely publicized in the engineering l i terature .  
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Investigators a r e  continually reporting integrating the perturbation equations, o r  

the adjoint equations (the backward perturbation equations) fo r  Keplerian 

conics (100,101) 

In future non- singular problems, the smal l  quantity will  enter  in the higher- 

This will  make the integration somewhat more  difficult in practice,  o rde r  problem. 

but not different conceptually. 

2 . 5  The Aerodynamically Dominated Regime 
A straightforward perturbation expansion failed to produce the effect  of 

aerodynamic forces in the previous section. 

fa i lure  can be directly t raced  to an  improper  scaling of one of the var iables  in the 

problem. 
at heights that a r e  of the o r d e r  of the planetary radius.  

ponential variation of p re s su re  with height ( p = const. = 1) 

As has  a l ready been indicated, this 

It was suggested that p re s su res  could not be the o rde r  of the wing loading 

In fact ,  if one uses  an  ex- 

(2 .  5- 1) 

then it is seen that when h = 1 

(2 .  5-2) 

which is exponentially smal l  if E is small .  

It is therefore required that either p re s su re  o r  altitude be rescaled.  But 

observe that no amount of rescaling of p will  make Eq. (2 .  5 .  3) nonsingular 

( 2 . 5 - 3 )  

One is then left only with the possibility of rescaling the altitude. 

The definition of a new altitude variable 

{ = -  
E 

(2 .  5-4) 

which should be valid fo r  h = O(E ) t ransforms Eqs. (2. 2-8 - 11) into 



( 2 .  5- 5) 
Formally expanding v 2 , p, y, and e as 

and equating terms to equal order  in E one obtains, to lowest o rde r ,  

( 2 .  5 - 6 )  
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0 
( 2 . 5 - 7 )  

At this  point,it is advantageous to introduce a convention that s t reamlines  

notation considerably. 

will  resul t  and an equation will  be identified by its o rde r  in E , and the the o rde r  of 

the original nondimensional variables that appear .  
2 called the "zeroth o rde r  equation for  v 

h = O(E)*(" o r  more  concisely the Itlowest order  equations for  aero-dominated 

flight. With the elimination of h and superscr ipts ,  Eq .  (2. 5-7) can be writ ten a s  

P r i m e s  and superscr ipts  will  be dropped where no confusion 

Thus, E q .  ( 2 .  5-7) will be 

= 0(1), y = 0(1) ,  8 = 0(1) ,  p = 0(1), and 

(2. 5-8) 

Notice that only aerodynamic forces  enter the problem. 

gained that is of o r d e r  of the orbi ta l  radius during the maneuver,  

Fur ther ,  t h e r e  is no range 

F o r  constant CL and CD, Eq, (2. 5-8) may be integrated to give 

*Notice that this h is not the same  h that appears  in Eq. (2. 5-7). 
resu l t  a f te r  pr imes have been dropped if the reader  recal ls  that the var iables  in 
this labeling statement a r e  always the original nondimensional variables.  
Section 2 .  2 .  

No confusion will 

See 
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( 2 . 5 - 9 )  

These a r e  the I1skiptt solutions of Allen and Eggers"' 'I, 
f o r  ax arbitraryvariationof p with h, p being specified by the last Eq. (2. 5-7) 

Notice that they a r e  valid 

( 2 .  5-10) 

This is of considerable importance especially if  the solution is to be computed to 

higher order .  Typical variations of p with h a r e  as  much a s  20 p e r  cent. 

plies that the non-constant p effect of the r e a l  atmosphere is as important as the 

next o rde r  correct ion to the solution. 

constant may be obtained by expanding p in a Taylor s e r i e s .  

This im- 

A resul t  equivalent to assuming that p is a 

Specifically, 

so 

o r  

hr 

(2 .  5-1 1) 

(2 .  5-12) 

which implies that to lowest o r d e r  the p re s su re ,  o r  equivalently the density, 

has  a locally exponential variation with height. This is an assumption that is commonly 

made in entry dynamics. 
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It should also be observed that Eqs .  (2 .5-  9 )  descr ibe  a turning maneuver 

done a t  the expense of kinetic energy. 

is seen to be C 

kinetic energy should have a high value of CL/CD, and the converse,  

pursued at some length la ter .  

A turning efficiency fac tor  for  the maneuver 

/LCD.  Thus a vehicle attempting to turn  with minimum loss of L 
This will  be 

Notice that when p = po, C O S Y  = C O S Y  
symmetr ic  about the value, Y = 0 for CL > O .  
"exit angle". 

physically reasonable t ra jectory that was turned a t  the bottom by lift and a t  the top 

by gravity.  

and Y = f Y o .  

Thus, the @ent ry  angle" equals the 

The turn is therefore  
0 

This t ra jectory could be matched with a Keplerian conic to give the 

A set of perturbation equations governing smal l  variations f rom this t ra jec-  

to ry  may be formed by taking a f i r s t  variation of these solutions with respect  to the 

init ial  condition. 

resulting equations a r e  

Again variation with respec t  to all var iables  will  be taken. The 

L +  

If altitude, o r  equivalently the p re s su re ,  is taken as the independent variable,  then 

6 p  and 6 po a r e  zero and Eq. (2. 5-14) may be inverted to give a transit ion mat r ix  

for  the perturbations f rom some initial to final p, Specifically, 

0 

0 0 . 
( 2 .  5-15) 
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The solution to the next o rde r  problem 

0 0 

may be written explicitly in t e rms  of this transition ma t r ix  as 

( 2 .  5-16) 

0 

( 2 . 5 - 1 7 )  
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(See Appendix C . )  v2(0) and dh a r e  specified in t e r m s  of Y(O) in Eqs.  (2. 5-7) and 

(2.5-91, but unfortunately Eq. ( 2 .  5-11) is not integratable in t e r m s  of normally tabu- 
lated functions. This is of little consequence a s  Eq. (2 .  5-12) se rves  to define a 

function that can be numerically tabulated. 

o r d e r  E is then 

An expansion fo r  the solution co r rec t  to 

. -  

(2. 5-18) 

It has  thus been demonstrated how one proceeds to higher o rde r ,  m o r e  accurate ,  

solutions once the lowest o rde r  approximation has been established in the f r ame-  

work of a n  asymptotic expansion. 
If C is zero,  o r  more  correctly,  O ( E )  Eqs.  ( 2 .  5- 9 ) ,  a r e  undefined. But L 

Eqs. (2.  5-8) may be integrated directly to give 

(2 .  5-19) 

These a r e  the ballistic entry solutions of Allen and Eggers  (8' 9 ) .  

equations a r e  also valid fo r  an arbi t raryvariat ion of /3 with h. 

Notice that these 

Similar to the procedure just  performed fo r  the skip equation, the solution 

to the next o rde r  approximation is produced by first obtaining the perturbation 

equations, associated with these solutions. These perturbation equations a r e  
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0 0 \ 0 

0 0 \ 0 6 ?. 

(2. 5-20) 

The transit ion ma t r ix  associated with Eq. (2. 5-20) considering p as the inde- 

pendent variable i s  

0 0 

(2.  5-21) 

The solution to the next order  approximation, 
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0 u 0 

coc t 1 
in t e rms  of the transition mat r ix  is 

. 

( 2 .  5 - 2 2 )  

. -  

0 I 0 

I 0 0 

clo+ I, ! 
( 2 .  5-23) 
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Now, a t  least ,  the las t  component of this equation may be integrated trivially, The 

other  two components, as before, must be taulated. 

In t e r m s  of this tabulation, the solution, co r rec t  to o rde r  E , is 

( 2 .  5-24) 

(10,103) Improvements to the ballistic and skip solutions a r e  of some interest .  

It has  been demonstrated that once these solutions have been produced within the 

context of a n  asymptotic expansion proceeding to a higher o rde r  the calculation of 

m o r e  accurate  solutions is  a straightforward, if algebraically complex, task.  This 

is the major  advantage of establishing these well known solutions within this sys- 

tematic procedure. 

A physiologically objectionable quality to flight in this regime is that the 

aerodynamic load factor ,  n, (total aerodynamic acceleration nondimensionalized 

with ear th  reference g, go @) given by 

( 2 .  5 - 2 5 )  

g c  is large (order  -). (See Table I) The maximum value of both the load factor and 
@ 

the  aerodynamic heating may be easily calculated. 

m i c  heating and load factor may be expressed in the functional form a s  an ae ro -  

dynamic effect,G, (see Appendix F) 

Observe that both the aerodyna- 

and that the maximum of G ,  G"', occurs when 

( 2 .  5-26) 

( 2 . 5 - 2 7  

But for  both ballistic and skip trajectories 
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(2.  5-28) 

(Neglecting f o r  the moment the variation of fl , )  

the maximum aerodynamic effect occurs  when 

Thus, for  a ballistic t ra jectory,  

( 2 .  5-29) 

which is at low altitudes for  vehicles with large "ballistic coefficient, 

and large entry angles, Yo. The maximum value of the aerodynamic effect is then 

(2. 5-30) 

It increases  with increasing flight path angle and depends on the geometry of the 

vehicle only through the value of CD. 
t o r ,  n , i s  

Further  the maximum aerodynamic load fac- 
>:< 

(2.  5-31) 

where the following constants have been substituted in Eq. (2.  5-30) 

It is completely determined by the initial values of flight path angle and velocity. 

These resul ts  were f i r s t  reported by Allen and Eggers ,  (899 )  

F o r  the purposes he re ,  it is important to observe that the surface of the 

planet may be encountered before the maximum aerodynamic effect occurs .  

a weapon entering at  large entry angles may only have to tolerate a maximum aero-  

dynamic effect of 

Thus, 
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(2.  5 - 3 2 )  

where p p and G I  a r e  the values of p ,  p and G at the surface of the p l ane t  

This value dec reases  as the ballistic coefficient, mgo/C 

increases .  

the aerodynamic effect. Thus, a large ballistic coefficient and flight path angle can 

possibly decrease the maximum heating and aerodynamic load encountered by a 

weapon pr ior  to surface contact. 

A, increases  and as yo 
The effect of negative lift is to fur ther  dec rease  the surface value of 

D 

Notice that Eq. (2.  5 - 3 2 )  is correct  to lowest o rde r  in E even for  nonconstant 

A corresponding relation fo r  maximum aerodynamic effect, when it does not 0. 
occur a t  the planet surface,  may be derived with some algebraic complexity. 

density, p , is 
The 

and the maximum aerodynamic effect is 

( 2 .  5-33) 

(2.5-34) 

2 .  6 The Aero-Gravity Per turbed Regime 

To this point, we have produced a Keplerian Regime and an Aero-dominated 

Reg ime .  

gravity forces  enter to equal o rde r .  

is no longer of the same  o rde r  as the wing loading. 

It is heurist ically plausible to seek a regime where the aerodynamic and 

Such a regime must exist  where the p r e s s u r e  

The rescaling of the p re s su re ,  o r  equivalently the density, as 

(2 .  6-1) 

and i ts  substitution into Eq. (2. 5-5) yields a new se t  of dynamical equations valid 

f o r  v = 0(1), Y = 0(1), h = O(E ) and p = O ( E  ) .  They a r e  2 
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4 3  
dh 

( 2 .  6 - 2 )  
Tolounest o rde r  in E , the perturbation equations a r e  

( 2 .  6 - 3 )  

which integrate tr ivially to 
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To next o rde r  in E the equations a r e  

( 2 .  6-4) 

( 2 .  6-5) 

These may be integrated by using the p") = p(O) (h) dependence given in Eq. (2 .  6-4) 

to give 

( 2 .  6 - 6 )  

- 3 3  - 



where 

1 
o r  in t e r m s  of the se r i e s  co r rec t  to o rde r  E 

0 = Go t < b 4 * o ( h - A b )  

(2 .  6-7) 

Proceeding to next order  i s  straightforward,though complex. This higher 

o rde r  solution is of less  pract ical  interest  because rotating atmosphere effects 

must  f i r s t  be included for  all planets except Venus. (See  Chapter IV.) It is a lso 

simple to observe that, to next o rde r ,  the effect of nonconstant g en ters  the problem. 

See Eqs.  ( 2 .  6-2).  Fu r the r ,  a s  variations in p are l a rge r  than O( E ) ,  effects of 

the r e a l  atmosphere a r e  more  important than the next o rde r  correct ion to the solu- 

tions. 

tion for  this regime reported by Shen(28) a s  cor rec t  to O(E ) .  

2.7 The Equilibrium Glide Regime 

It is interesting to observe that none of these effects were  included in a solu- 
2 

Until now, it has  been tacitly assumed that the flight path angle Y is of o rde r  
' one, 

then appropriate to investigate the behavior of dynamical equations for  Y = O(E), 

v 2  = 0(1), p = O(E) and h=O(E).  

ping the pr ime,  one obtains 

But it is commonly known that flight paths for  entry a r e  usually small .  It i s  

Letting Y = E Y' in Eqs .  ( 2 .  6-2) and a s  usual drop- 

(2 .7 -  1) 
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Substituting the appropriate s e r i e s  forsine' i ,  C o s  E y, and tan (E y, and expanding the 
2 

dependent variables,  v , y, p, in a power se r i e s  in E , viz. 

one obtains,to lowest o rde r  in E 

0 

1 = -  do 
d i  'd 

-0- $.\ 

( 2 .  7 -2 )  

( 2 . 7 - 3 )  

( 2 . 7 - 4 )  

( 2 . 7 - 5 )  

(2 .  7 -6)  

Again, a singular s e t  of equations have been produced. 

has  disappeared. This reduces the equations to ordinary algebraic equations for  

v 2  and Y in t e r m s  of p ,  Notice that Eq. ( 2 .  7-4) specifies vz in t e r m s  of p C L  and 

Eqs. ( 2 .  7-3 )  and (2 .  7-6) specify Y in t e r m s  of p ,  v L  and CD, so  that 

The derivative in Eq.  (2.7-4) 

( 2 .  7-9) 
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( 2 .  7- 10) 

where the possibility of j3 CL and CD varying with h is included. There  a r e  

Sanger 's  equilibrium glide solutions. 

initial conditions cannot be met .  

another regime that will be described in Section 2 .  9 .  
ing on the t ra jectory is available through the modulation of C L  and CD. 

effect ,requires a vehicle with variable CL and CD to fly such a t ra jectory.  

It i s  important to observe that a rb i t r a ry  

Small  deviations f rom this t ra jectory fall into 

Some possibility of remain- 

This,in 

The aerodynamic load factor given by 

(2.  7 -11)  

increases  monotonically to a value that is order  one for  C L >  0 .  

The heating ra te  given by 

does reach a maximum when 

(2. 7 -12)  

(2 .  7-13) 

( 2 .  7 -  14)  

o r  using Eq. ( 2 .  7-9) when 
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( 2 .  7-15)  

The maximum value of the heating rate  i s  given by 

( 2 .  7-16) 

s o  that increasing C L decreases  the maximum heating ra te .  The total  heating is 

given by 

( 2 .  7-17) 

As  i <1 for  convective heating, it i s  seen that high CL increases  the total 

heat input while high CD decreases  the total  heat input. The converse is t rue  for  

radiative heating. 

The range equation may  be integrated simply in t e r m s  of the velocity to give 

( 2 .  7-18) 

Notice, p r ior  to leaving the equilibrium glide solution, that there  i s  a nonuniformity 

of the solution a t  v2 = 1. F o r  v2 >1, Eq.  ( 2 .  7-9) requires  that C L < O  andEq.(2.7-lO) 

implies that Y > 0 .  

Y 

2 F o r  v <1 the two equations imply that C L  > O  and 

0 .  At precisely v2  = 1 Eq.  ( 2 . 7 - 9 )  requires  cL = 0 .  Then if Y = O  then 
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1 

-P cd . To pursue this point in detail, define a new variable v2 = v2 -1 and 

= O(E), Y = O(E), 

d C L  
dp 

2 ’  2 
assume i t  is order  E , 

CL = O(E), h = O ( E ) ,  to lowest o rde r  in E yields, 

Writing the dynamical equations for v 

( 2 .  7-19) 

F o r  the first t ime, all t e r m s  in the dynamical equations enter  to the same  o rde r .  A 

general  solution would indeed be difficult to obtain. But for  the purposes here ,  it is 
dY sufficient to observe that the equation admits  a = 0 solution, if  

#‘ ’ c, = - - ( 2 .  7-20) 

which is the equilibrium glide solution near  c i rcu lar  satell i te velocity. 

As this portion of the t ra jectory occurs  over an altitude interval that is 

obviously small  i t  is plausable to Tescale the altitude. 

mensional variables h = O(E ) ,  v 

dynamical equations to lowest order  in E a r e  

So f a r  the original nondi- 
2 2 2  = v -1 = O(E), CL = 0(1) and Y = O(E), the 

(2. 7-21) 
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. 

These equations say that the velocity and the p re s su re  (or  equivalently the density) 

is constant to lowest o rde r  and that Y is controllable with variations in CL of o r d e r  

one. We have produced an equation, presumably describing the short t ime behavior 

of the trajectory.  

ficient h e r e  to again observe that Y(') = const is a solution i f  CL  = O(E ) .  

This topic w i l l  be t reated in a general  context l a t e r .  It is suf- 

The equations to next o rde r  in E are, assuming CL = O(E ) 

These may be integrated to give 

2 The expansion for  v2 and Y valid to o rde r  E is 

(2. 7-22) 

(2 .  7-23) 

(2. 7-24) 

I 

This solution goes smoothly through Y = 0 and E v2 = v2 -1 = 0 fo r  a rb i t r a ry  CD and 

L' 
This ra ther  lengthy investigation of the singularity in the equilibrium glidei 

solution serves  to i l lustrate a procedure for  investigating the non-uniformities in 

any perturbation solution. 

assumptions made in obtaining the solution fails. 

was that the quantity (v2 -1) was order one. 

Generally, a non-uniformity exists where one of the 

Here the assumption that failed 

The remedy for  the problem is always 
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to resca le  the small quantity and per form another s t ra ight  forward  perturbation 

expansion. 

2 .8  The Orbital  Decay Regime 

Observing that the integrals for  the equilibrium glide regime,  Eqs .  (2 .  7-9 - 
10) are poorly behaved for  CL = O(E), i t  is natural  to seek solutions valid for  this 

case ,  

in E , 

I 

Returning to Eqs .  (2.  7-1) and letting C L  = E CL one obtains,to lowest. o rde r  

(2 .  8-1) 

The equations may only be satisfied if  p i s  a lso rescaled.  

no y = O(E) flight regime when CL and p = O(E ) .  With this motivation, the behavior 

of the dynamical equations, Eqs .  (2 .  7-l) ,will  be investigated for Y = O(E), v = 0(1), 

p = O(€ 5 ,  h = O(E) and for  the moment CL = O ( 1 ) .  They a r e  

This implies that there  is 

2 

To lowest order  in E, the expansion equations a r e  

d v2 'I' z = o  
I 

( 2 .  8 - 2 )  

( 2 .  8-3) 



o r  simply that the velocity to lowest o rde r  is circular  satellite velocity. To o rde r  

the expansion equations are 

(2. 8-4) 

By the use of the last equation of Eqs. (2. 8-3) and the result  f rom Eqs.  (2. 8-3 )  that 

V 2(o) = 1, v2(l)  may be eliminated from Eq. (2.  8-5) to give 

where 

( 2 .  8-6) 

(2. 8-7) 

This is clearly the equation for  a nonlinear oscillation, valid fo r  CL cO(1) o r  

CL =O(E), and with equilibrium point given by 

(2 .  8-8) 

If this equilibrium flight path angle is substituted in Eq. (2 .  8-5) for  CL = 0,one 

obtains the interesting resul t  

(2. 8-9) 
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o r  

so that the velocity to o rde r  E is just  the local satell i te velocity. 

the wel l  known phenomenon that bodies undergoing orbi ta l  decay speed up to main- 

tain local c i rcular  satell i te velocity \(Fg. It i s  interesting to observe that we have 

shown that this  behavior is only possible in a p r o ( €  ) flight regime. 

This ag rees  with- 

2 

2.9 The Moderate Flight Pa th  Angle Low-Density Regime 

To this  point, only scaling of the variables in integer powers of E have been 

considered. As Y enters  the dynamic equations to f i r s t  and second powers for  

smal l  Y i t  is natural  to seek a distinguished form of the equation f o r  Y = O ( E 2 ) .  The 
writing of the dynamic equations for  Y = O ( E i ) ,  p = O ( E ) ,  h = O(E),  v2 = 0(1) produces 

1 

1 (2 .  9-1) 
It is c lear  that one must seek an expansion in powers of €2. To lowest o rde r  

To next o rde r  for  the velocity only 

(2. 9-2) 

( 2 .  9-3) 

These equations can be integrated to give 
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where 

- 
The expansion correct  to order  E in Y and E in v 2  is then 

where 

This solution describes an oscillatory type of trajectory that occurs whenthe 

initial conditions a r e  not correct  for an equilibrium glide. 

Recently, Hanin(65)has obtained interesting approximations to this type of trajectory 

by considering l inear perturbations f r o m  equilibrium glide. 
above expression should give accurate description of the f i r s t  nonlinear oscillation 

where Hanin has  shown his  results to be in poor agreement with numerical  integra- 

tion. 

See Section 2. 7 .  

It is expected that the 

F o r  flight a t  higher p and low CL a slightly more  complicated set  of pertur- 

Consider the dynamic equations for  v 
1 2 bation equations results.  = 0(1), p =O(E 9 ,  

1 

h O ( E ) ,  Y = O ( E 2 ) :  
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( 2 . 9 - 9 )  
TO lowest o rde r  in E, 

These a r e  the f o r m  of the dynamic equations assumed by both Eggers(*') and 

Chapman(13) in their  analysis of entry dynamics. 

s imgler  fo rm exists to lowest o rde r  for most other regimes of flight. 

that these analyses a r e  too accurate  in these regimes.  To next o rde r ,  the flight 
path component of gravity en ters  in most  regimes so that these analyses a r e  not 
uniformly valid to order  E for a l l  regimes of hy$ervelocity flight. 

pulation the equations may be put in the following form: 

It is interesting to observe that a 

This implies 

With some mani- 

( 2 .  9- 11) 
where 

and p ,  C 
stant CL and CD entry. Ser ies  s ah t ions  have been presented by Eggers(4'), Citron 

and Meir (33) '  and Wang and Chu("). These solutions may be more  adequate if  one 

and CD were assumed constant. This is the Eggers '  equation for  con- L 
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r e s t r i c t s  their  use to  t h e c L  = ( ) ( E % ) ,  p 1 ~ ( E Z ) ,  Y = O ( E z )  regime, a restriction not 

imposed by these authors,  

1 1 

Larrabee ( 3 7 )  has  arranged the equations in the following form: 

where 

( 2 .  9-12) 

and 

and shown its relation to the Chapman function 

(2. 9-13) y' t - D  

which is tabulated in R e f .  (1 4). 
One final f o r m  of the dynamic equation f o r  moderate flight path angles occurs  

for  velocities close t,o orbi ta l  velocity. 

Y =  O(E '1, v - 1  = v = O ( E Z ) ,  p = O ( E ) ,  C L =  0(1) a n d h =  O(E). 

Consider the dynamic equations scaled for 
L 2  2 

(2.9-14) 

Then, to lowest o r d e r  in €,one obtains: 
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( 2 .  9-15) 

which can be integrated to give 

( 2 .  9-16) 

(2 .  9-17) 

Interestingly, these a r e  the limiting forms of the t tskiptt  and Itballistictt equation f o r '  

small Y .  See Section 2. 5. Understandably, the same  equations that apply when 

aerodynamic forces mask gravity and centrifugal accelerations a r e  valid when these 

forces  a r e  small  due to small flight path angle and near  balance of gravity and cen- 

tirfugal accelerations. 

Ref. (7). 

These a r e  the lowest o rde r  equation used by Lees et.aL, in 

2 .  10 The Near Sonic Flight Regime 

Until now, only t ra jector ies  with velocity the o rde r  of orbital  velocity have 

been considered. 

when the velocity is  o r d e r  E 

in all atmospheres,  

t e r m s  of current parameters  

The next distinguished form of the dynamic equations occurs 
- 

o r  when v 2  = O(E). This is the o rde r  of sonic velocity 

This is easily seen by expressing the Mach number, M, in 
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(2.10-1) 

2 So if v = O(E), Where 

M = O ( 1 ) .  

y = O (  1 )  and p = 0(1) yields 

is the ratio of specific heats and is near  one for all gases .  
2 The writing of the dynamical equations for  v = O(E), h = O(E), e = O ( E ) ,  

To lowest o rde r  in E one has  

(2.10-2) 

(2 .  10-3) 

These a r e  equations describing flight over a flat, constant gravity ear th ,  

esting to observe that these are the assumptions commonly made in deriving the dy- 

namic equations for  flight at  velocities the o rde r  of sonic velocity. 

It is inter-  
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Solutions f o r  these equations a r e  difficult. One interesting se t  of solutions 

Thus f o r  Y = O(E)  can be obtained by assuming flight is a t  small flight path angles.  

and h = O(E ) the equations ca r r i ed  to lowest o rde r  are  2 

( 2 .  10-4) 

2 These equations are  singular, completely specifying the p ,  v , andynecessary 
to fly along the trajectory.  The range equation may be integrated to give 

( 2 .  1 0 - 5 )  

cD which is valid for  any variation of -with 0 that is capable of maintaining C -  
L 

Y = O(E). So, integrals for  the sonic regime a r e  available for  values of g w h i c h  
L keep Y = O(E). 

2 .  11 The Low Velocity Flight Regime 

To this point, flight at velocities the o rde r  of orbital  velocity and velocities 

the o rde r  of sonic velocity have been considered. 

dynamic equation occurs  when the velocity is of o r d e r  E . 
dynamic equations fo r  v 

Another distinguished form of the 

To see  this, write the 
2 2 1 

= O(E ) ,  h = O(E),  Y = 0(1), and p = O (  7): 
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-4 'd As = -  dh \+ t h  

To lowest o rde r  in E the equations become 

(2.11-1) 

(2.11-2) 

These simply say that the aerodynamic and gravity fo rces  a r e  in balance to lowest 

o r d e r  

(2 .  11-3) 
c, 15' C O S 8  

z 

These equations have formed the back bone of "quasi- 

a i rcraf t .  

ing the performance of vehicles capable of near  sonic velocity. 

2. 1 2  A Systematic Procedure fo r  Identifying Regimes of Flight 

performance of 

It is understandable that such analysis has  proved inadequate for  comput- 

The procedure for identifying the flight regime up to now has been ad  hoc, 
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based to some extent on intuition. 

Observe that to this point we have t r i ed  various possible scalings of the variables 

in the dynamic equations. 

equations between acceleration, aerodynamic and gravity t e r m s ,  this was identified 

as a regime of flight. 

This procedure can readily be systematized. 

When a meaningful lowest o r d e r  balance occurred in the 

A systematic exhaustion of all such regimes is possible. It simply requires  

that an arbit.rary scaling be applied to the variables in the dynamic equations and 

that all possible balances between t e r m s  be investigated. 

will occur.  

However, some difficulty 

2n The dynamic equations fo r  v 2  = O(E v), p = O(E np), h = O(Enh), Y = O ( E  nv), 
cL = o ( + ~ L )  a r e  

(2.  12-1) 

where the range equation has  not been included. Cursory analysis will 

reveal  that a myriad of possibilities can exist. 

able by considering f i r s t  h ,-O(E) and Vc O ( 1 ) .  

explicitly enters the lowest order  problem. 

nated by use of the hydrostatic equation, Eq. (2. 12-3). Further ,  sin Y and cos Y 

will be conveniently expressed in t e r m s  of their  appropriate s e r i e s ,  retaining only 

the first t e rm.  With these simplifications, Eqs.  (2 .  12-1 -3) become, to lowest 

o rde r ,  

The situation may be made t ract-  

F o r  this value of scaling, h never 

Its implicit dependence may be elimi- 

( 2 .  12-4) 
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(2. 12-5) 

Considering first Eq. (2. 12-4) the following possibilities exist: 

(1) Flight path acceleration dominates if 

2n < 2nv t n - n y ,  1 
V P 

(2) D r a g  dominates if  

2nv t n -ny < 2nv, 1 
P 

(3) The flight path component of gravity dominates if 

1 < 2nv, nv t n -2n 
P Y  

These inequalities a r e  easiest  to interpret  in t e r m s  of the regions of a 

Euclidean space where 2 n  n and n a r e  the coordinates ( see  Fig.  2.12-1). The 

inequalities then define regions of this space where the appropriate t e r m  in the dif- 

ferent ia l  equation dominates. A s  nv, n and n a r e  the scaling in E of v, p andY, 

the plot may be interpreted as an inverse log plot of regions in state space.  

v' P Y 

P Y 

In Fig.  2. 12- 1 it is seen that the state space is divided into th ree  regions. 

Flight path acceleration dominates for low densit ies and high velocities. 

nates  for  high densit ies and smal l  flight path angles,  and the velocity component of 

gravity dominates for  low velocities. Notice only when the velocities a r e  o rde r  of 

sonic velocity (v = O ( E ) )  and densities and flight path angles a r e  of equal o rde r  do 

a l l  t e r m s  enter to equal order  in the differential equation. 

Drag domi- 

2 

Proceeding in an analogous manner with Eq.  (2,12-4) one a r r ives  at the fol- 

lowing conditions: 

(1) Normal acceleration dominates if 

2 n y < n  t n L ,  1 ,  1 -2n 
V P 

(2) Lift dominates if 

n t n <2ny, 1, 1 -2nv 
P L  

(3) Centrifugal acceleration dominates if  

V 
1 <2ny, n t n 1 -2n 

P L' 

1 -2n <2ny, n -t n 1 
(4) The normal  component of gravity dominates if 

V P L' 
These conditions may be similarly interpreted in terms of parti t ions in s ta te  

space.  See F i g .  2. 12-1. The scaling of lift coefficient and density have been com- 

bined to allow a three-dimensional sketch. There  a r e  now four divisions of the 
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N o t ? .  

n 
y = O ( c  7 )  

Normal F:quation 

F i g .  2 . 1 2 - 1  

Regions of Behavior of Dynamic Equations for y <0(1), h =  O(E) 
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space,  centrifugal acceleration dominates a t  large velocities, small  densities (or  p) 

and small flight path angles. The normal component of gravity dominates a t  small  

velocities, flight pzth angles and densities(or C 3 .  Normal acceleration dominates 

at l a r g e  velocities and f l i gh t  path angles. 

densit ies (or CL). 

the same  o rde r  only when the velocity is the o rde r  of orbital  velocity, flight path 

angle is o rde r  E and the density C As this region of state 

space does not correspond to  the region where one obtains complete balance for the 

flight path equation, there  is no region of state space where all t e r m s  in both dynam 

ica l  equation enter to the same  order.  

Lift dominates at large velocities and 

It is interesting to observe that all t e r m s  in the differential equation a r e  of 

product is of o rde r  E . L 

To map the region of state space where the flight path angle is o rde r  8 1 2  

requires  that the dynamic equations be rewritten in t e r m s  of 

8'  a % - 5  ( 2 . 1 2 - 6 )  
P 

1 
2n With this redefinition and fo r  Y l  = O(enY ), v 2  = O ( E  

and h = O(E) the dynamic equations to lowest order  in E a r e :  

V ) ,  p = o(enP),  cL = o(enL) ,  

(2 .  12-7) 

( 2 .  12-8) 

1 

where only the f i r s t  t e r m s  a r e  to be retained in se r i e s  expansions fo r  sinY 
t 

and cos Y , 

conditions : 

The regions of behavior of these equations a r e  defined by the following 

(1) For dominant flight path acceleration 

2n <2nv + n 1 
V P' 

(2) For dominant drag 

2n t n <2nv, 1 
V P  

(3) For dominant flight path component of gravity 
1 <2nv, 2nv + n 

P 
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(4) For dominant normal  acceleration 

V 
0 <np .f n L  -nyt, 1, 1 -Ln 

(5) For  dominant lift 

n t n -n I <0, 1 1 -Ln P L Y  V 

(6) For dominant centrifuga.1 acceleration 

1 < 0 ,  n t nL -n I ,  1 -Ln P Y V 

This condition obviously cannot be satisfied. 

For dominant normal  component of gravity (7) 

1 -Lnv < O ,  n t n L -ny ' ,  1 
P 

Again, these conditions a re  easist to interpret  in t e r m s  of divisions of state space.  
See Fig.  2. 12-2. There  is a balance between drag and flight path accelerations at 

high velocities f o r  densities order  one. 

acceleration and gravity component fo r  velocities order  E and low densities. And 

finally, t he re  i s  a balance between drag and the flight path component of gravity f o r  

high densities and low velocities. 

There is a balance between flight path 
1 - 

Interestingly, a balance occurs  only among all three t e r m s  in the flight path 

Since equation f o r  densities of order  one and velocities the o r d e r  of sonic velocity. 

the flight path angles a r e  large,  this should be a short-lived portion of the t ra jec-  

tory. 

In Fig.  2. 12-2, it is seen that balance between normal  gravity, l i f t  and nor- 

velocities of the order  of sonic velocity, and where mal acceleration occur  only for 

the order  of Y '  equals the o r d e r  of the p CL product. 

over  the value of CL, this condition need never occur .  

2. 12- 1 and 2. 12-2 join properly at nvl = 0 ,  nV = 0 .  

As  one normally h a s  control 

Notice finally, that Figs .  

2 P r i o r  to proceeding to the h = O(E ) regime, a comment on its impliciation 

is in order .  

kine mat  ic r e la t ion 

Notice that the independent variable h was introduced by use of the 

To produce a nonsingular set of equations, i t  is presumed that this equation is  in 

balanc e. Spec if ically , that 

so that specifying the order  of h, v,  and sinY specifies the order  of t .  

example, a regime that h a s  h = O ( E  

Thus, for 
L 

), v = 0(1), sinY = 0(1), must occur on a t ime 
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t 

Flight Path Equation 

Note: 
2n 

v 2  = O(r  V) 

- n - y  S O ( €  y) 
n i  

2 

Equati0.n 

+ a c  +En 

Note: 

v2 = o ( €  

CL p = O ( E  
"L 

# 

Fig. 2 .  12-2  

TI 
Regions of Behavior of Dynamic Equations for Y =- 2 - Y <0(1), h c O(E) 
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scale  of o r d e r  E ' which is probably too short  to be of interest  in t ra jectory analysis 

but is exactly the t ime scale  fo r  stability analysis.  

h = O(E 
o r  rapid t ime scales.  

p = O ( E  P), cL o ( E ~ L ) ,  Y = 0 ( ~ ~ y ) f 0 ( 1 )  a r e  

Therefore ,  the implication of 
2 

) regime is normally flight a t  either small flight path angles,or n velocities 

2 The equations, valid to lowest o rde r  in E , fo r  h = O ( E  
n 

) ,v2  = O ( E ~ ~ ~ ) ,  

(2. 12-9) 

(2.  12- 11) 

where appropriate s e r i e s  a r e  assumed substituted fo r  sinY and cos Y,as Y is 

presumed small ,  

tion normally made in low velocity stability analysis. 

valid assumption fo r  velocities the o rde r  of sonic velocity if the altitude excursion 

of interest  is O ( E  ) ,  

It is  seen that p is a constant to lowest o rde r .  This is a n  a s s u r r p  

It is seen to be an equally 

2 

The order  of the variables required for  each of the t e r m s  in the equations 

to  be dominant a r e  given by the following relations: 

(1) F o r  dominant flight path acceleration 
2n <2nv t n -n t 1, 2 

V P Y  
(2) F o r  dominant drag 

+ 1 <2nv, 2 

(3) F o r  dominant flight path component of gravity 
2nv nP -ny 

2<2nv  t np -ny t 1, 2nv 

(4) F o r  dominant normal  acceleration 

2n < n  t nL t 1, 2 .  2 - 2 n v  
Y P  

(5) F o r  dominant lift 

n t nL t 1 <2ny ,  2, 2 -2nv P 
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(6) F o r  dominant centrifugal acceleration 

2 < 2ny; np t n L  t 1, 2 -2nv 

(7) F o r  dominant normal  component of gravity 

2 -2nv < 2 n  n t n t 1, 2 
Y' p L 

These conditions a r e  i l lustrated in F ig .  2. 12-3. By comparing these 

f igures  with F igs ,  2. 12-1,one sees  that they a r e  topologically s imi la r .  

stretching of the 2nv and ny coordinates which ref lects  the interrelation of v, Y,  and 

There  is a 

h that has  already been discussed. 

motion occurs  along constant n 

oscillation for  a glider at v 

motion where gravity and drag a r e  in balance along the flight path. 

is then made f rom lift and acceleration balance to a gravity and acceleration balance 

normal  to the flight path. If the altitude excusion is allowed to be order  E then it is 
seen iii F i g .  2. 12- 1 that the possibility for  this type of motion exists a t  sonic veloc- 

i t i es  and at wing loadings,(p C ) of order  one. Such motion cannot exist  without L 
thrust ,for velocities the o rde r  of orbital  velocity, because drag always dominates the 

flight path component of gravity, This has  led to some confusion in cur ren t  l i tera-  

t u re  on the subject. 

dynamic equations associated with velocities close to satell i te velocity 

The interesting feature  of these figures is that 

Then, for  example, the classical  phugoid 

= O ( E  ),  Y = 0(1) ,  p CL = O ( F )  can be interpreted as a 

planes. 
2 P Z  1 

A transit ion 

(43,44'45) 
It has  been shown in Section 2. 9 that there  a r e  distinguished forms of the 

or smal l  
L v -1. To investigate this behavior introduce the variable 

I 
y' s t+-\ (2.12-12) 

Then the dynamic equations, valid to lowest order  in E ,  for  h = O ( E )  v"=O(c 2n{<0(1), 
1 =O(E PI,  cL: o ( E ~ L ) ,  Y = O ( E ~ Y )  Lo (1 )  a r e  n 
P 

(2 .  12-13) 

(2 .  12-14) 

Where the appropriate s e r i e s  a r e  assumed substituted for  sinY and cos  Y .  

The o rde r s  in E of the variables required for  each of the t e r m s  in the 
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a = a  + 

Notr: 

v I )  f=!v 

v 2  = O(c ") 

p = O ( c  1') 

2 I1 

Fig .  2 .  1 2 - 3  

Regions of Behavior of Dynamic Equations for  Y < O ( l ) ,  h = O ( E ~ )  
1 
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cny ' t 

~~ 

I 

0 ,  =ov--., np Flight Path Equation 

Normal Equation 

a,, = aL + ac  + gn 

Note: 

,2 - 1 = v 2 '  . 0 (r2nv)  

Fig.  2 .  12-4 

Regimes of Behavior of Dynamic Equations for 

Y < 0 ( 1 ) ,  h = O(E)! v2' = v2 - 1  <0(1) 
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dynamic equations to be dominant, a r e  given by the following relations: 

(1) F o r  dominant flight path acceleration 

2n I < n  - n y s  1 

(2) F o r  dominant drag 
V P  

n - n y < 2 n v 1 ,  1 
P 

(3) F o r  dominant flight path component of gravity 

1 < 2 n  I ,  n -n " P Y  
(4) F o r  dominant-normal acceleratation 

L + nP' 2nv' 
2 9  < n  

(5) F o r  dominant lift 

nL t n < 2ny, 2nv\ t 1 
P 

(6 )  F o r  dominant normal  gravity centrifugal acceleration difference 

2n I + 1 < 2ny, nL t n 
V P 

These conditions a r e  illustrated in Fig.  2. 12-4 . 
sible balance of a l l  t e r m s  in the dynamic equations for  v 2  = O(E),CLp = O(E ) 

p = 0 (E ) .  
may be destroyed by choice of a CL not of o rde r  one. 

dition 0 = a 

become arbi t rar i ly  small  as v2  becomes small ,  a result  that has already been 

observed. 

gravity and centrifugal acceleration in near  balance,and drag nearly balancing the 

flight path component of gravity. 

It is  observed that t he re  is  a pos- 
2 

2 This is the only condition fo r  which such a balance is possible and it 

The equilibrium glide con- 

t ac  t gn is see? to exist on a plane that requires Y and p CL to 

Orbital decay is seen to be characterized by the normal  component of 

A particularly useful observation is that t he re  is a relatively large region of 

the state space where only aerodynamic forces  balance the normal  and flight path 

accelerations.  

2. 13 A Multiple Regime Solution 

This is the near  orbital  velocity aerodynamically dominated regime. 

After producing expansions for numerous regimes associated with flight a t  

orbital  velocities, it is natural  to seek a single solution that to lowest o rde r  con- 

fo rms  to these expansions. Such a solution would preclude the practical  problem of 

choosing the proper expansions associated with given initial conditions,if only lowest 

o rde r  resul ts  a r e  desired.  

It a lso holds the possibility of being valid f o r  a complete t ra jectory that tra- 

This possibility may well  not be realized fo r  it ve r ses  a number of these regimes.  

will be shown in Chapter 111 that the matching principle sometimes requires  a t r a -  

jectory to be determined to o rde r  E in one regime pr ior  to establishing the initial 

conditions to lowest o r d e r  in another regime. Certainly the next o rde r  correction 

to this lowest order solution would preclude this difficulty, but it will result  that the 
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solution is overly complex even to lowest o rde r .  A procedure that ass i i res  validity 

of a solution for  the number of regimes of interest,and usually produces solutions of 
less coixplexity than this multiple regime solution,will be illustrated in Chapter 111. 

This multiple regime solution will now be developed. It will be shown to 

have a close but not exact similarity to Loh’s “second o r d e r ”  solution. 

effect, will supply an analytical justification of the numerical  success  experienced 

by Loh’s empirically developed solution and also se rve  to define its region of 

validity. 

systematic higher approximations. 

This,in 

It will a lso co r rec t  Loh’s solution and place i t  in a form that will allow 

Consider the following lowest o rde r  dynamic equations: 

(2. 13-2) 

(2. 13-3) 

(2. 13-4) 

It is observed that these equations neglect t e r m s  no l a rge r  than o rde r  E for  the fol- ’ 

lowing ranges of the dynamic variables: 

(1) h = O(E), v2  = 0(1), y = 0(1), p = O(1) See Section 2. 5. 

(2) h = O(E), v‘ = 0(1), y = O(l){ p = O ( E )  See Section 2. 6. 
(3) h = O(E), v2 = 0(1), Y = O ( E z ) ,  p = O ( E )  See Section 2. 9. 
(4) h = O(E), v2  -1 = O ( E $ ,  Y = O(E+), p = O ( E )  See Section 2 . 9  

A slight rearrangement of equations, Eqs.  (2.  13-1 - 2) and (2 .  13-4) yields: 
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( 2 .  13-6) 

(2 .  13-9) 

( 2 . 1 3 -  10) 
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The range equation, Eq. (2 .  13-3),may be integrated to give 

where as  usual, p and h a r e  related by 

Lob's solution may be produced 

The last term in Eq. (1) 

(2.  13-11) 

( 2 .  13-12) 

by making the following approximate integrations: 

( 2 .  13-5): 

( 2 )  The last t e r m  in Eq. 
( 2 .  13-13) 

(2. 12- 7 ) :  

( 2 .  13-14) 
This  t ransforms Eq. (2.  13-8) and (2 .  13-9) into 

( 2 .  13-15) 

- 63 - 



( 2 .  13-16) 
These approximate integrations a r e  not of lowest order  importance if ei ther 

(1- -) = O ( E 2 )  o r  p = O(1). 

greatest  accuracy. 

valid to lowest order .  

1 1 

These a r e  the t ra jec tor ies  that Loh predicts with the 
V 
0 

If one of these conditions i s  not satisfied, the solutions a r e  not 

This has  been numerically verified by Citron and Meir (33) . 

A final bit of tailoring i s  accomplished by observing that there  is some de- 

g;ee of freedom left in 
1 cosYo(l --). At the 

p and p,or equivalently 

2 
V 
0 

the choice of the initial conditions in the t e r m ,  

sacr i f ice  of coupling the equation for  Y and v a s  functions of 

h, these initial conditions may be established instantaneously -. 
L by use of the current values of Y and v . This may allow the solutions to t r ave r se  

seve ra l  of the regimes for which they a r e  valid to lowest o rde r  without the bother. 

of re-establishing the initial conditions on this t e rm.  Interestingly, i t  a lso makes 

the solution valid to lowest order  for  the equilibrium glide regime where h = O ( E ) ,  

v 2  = 0(1) ,  Y = O ( E ) ,  p = O ( E ) .  

become 

With this modification, Eqs. ( 2 .  13-15) and ( 2 .  13-16) 

( 2 .  13-17) 

( 2 .  13-18) 

Where p and p a r e  now assumed to have an exponential variation with h 

- 64 - 



(2. 13-19) 

These a r e  Loh's "second o rde r "  solutions for  planetary entry. 
they a r e  only valid to lowest (or  ?first t t)  o rde r  and not to "second order"  as claimed 

But they a r e  valid to lowest o rde r  for a number of regimes.  

It is observed that 

Specifically for: 
2 

2 
(1) h = O(E), v = O(1), Y = O ( l ) ,  p = O ( 1 )  

(2) h = O(E), v = 0(1), Y = O(l){ p = O(E) 
(3) h = O(E), v2  = 0(1), Y = O ( E ~ ) ,  p = O(E) 
(4) h = O(E), v 2  - 1 = O ( E ~ ) ,  Y = O(E+), 
(5) h = O(E), v 2  = 0(1), Y = O(E), p = O(E) 
with the additional restriction that 

= O ( E )  

(2 .  13-20) 

Eqs. (2 .  13-8 - 11) a r e  valid in these same  regimes without this final restriction if 

a similar ruse of instantaneously establishing the initial conditions on the quantity, 

cos  Yo ( 1 - % ) is used. They a r e  more complex. If a solution of this range of 

validity is not needed, an approach that may obtain s impler ,  more  accurate  solu- 

tions is to match the expansions for the range of interest .  An example of this pro- 

cedure will be given in Chapter 111. 

V 
0 
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CHAPTER 111 

PATCHIN G AND MATCHING THE ASY W T O T I C  EXPANSIONS 

3 .  1 Introduction 

To this point, only identification of the regimes of flight and solutions of the 

appropriate dynamic equation in asymptotic expansions have been considered. 

if a t ra jectory that t r ave r ses  several  regimes of flight is to be analyzed, 
method of combining the previously obtained solutions must be sought. 

But 

some 

The simplest  method of combining the solutions is to patch them together at 
their  common boundary. 

in e of one of the variables in the dynamic equations, ostensibly there  is an inter-  

mediate scaling of that variable which can be used to define a boundary. The a rb i -  

t r a r y  constants in one solution can be picked so that the two solutions ag ree  a t  this 

As the two solutions were  obtained by a different scaling 

boundary. This is a method suggested by Battin(17)and Pontryagin, e t  al, (55) 

It is c lear  that such a procedure c rea t e s  a corner .  A term in the dynamic 

equation that was of order  one in one region may be of o rde r  E in the other.  

has arbi t rar i ly  picked a point to change the dynamic equations f rom one fo rm to  

another. Though this is heuristically not pleasing, it may not c r ea t e  an appreci- 

able e r r o r  in the combined solution, especially if  the two solutions were  accurate  

to an o rde r  E higher than was needed. 

"Matching Principle" of Kaplan and Lagerstrom (4s 5' ') ( see  Appendix B). It is 

slightly m o r e  sophisticated and consequently m o r e  complicated. It is not apparent 

that the results always warrant  the extra complexity, but a t  least  conceptually i t  is 

m o r e  pleasing. 

One  

The procedure for combining solutions that will be used he re  is the 

The principle is founded on the assumption that the two expansions sha re  

some common region of validity, an "overlap domain". 

to match smoothly, they must be algebraically identical, to each o rde r  in E ,  in 

this region. The a rb i t r a ry  constants in the two expansions a r e  chosen s o  that this 

matching occurs.  A solution that smoothly transit ions f rom one expansion to 

another is then formed by summing the two expansions and subtracting their  com- 

mon par t .  This solution is caued a composite expansion for  the two regimes that 

a r e  matched. 

If the two expansions a r e  

Two solutions will be matched. The f i r s t  will produce the well established 

procedure fo r  patching Keplerian conics to ballistic t ra jector ies  within this more  



general  context. 

for  an interesting class  of lifting t ra jector ies .  

3. 2 Matching a Keplerian Conic With a Ballistic Trajectory 

The second will produce a solution not previously published, valid 

The f i r s t  use of the matching principle will be to match a Keplerian conic 

and an aerodominated ballistic t ra jectory.  The resul t  will be, in some sense,  

obvious, but will s e rve  to i l lustrate some features  of the principle on a simple 

example. 

The ballistic trajectory solution, to lowest o rde r  in E , is ( see  Section 2 .  5) 

The solution for a Keplerian conic is ( see  Section 2 .  4) 

(3.2-1) 

where the ballistic trajectory variable (height), has been introduced by the 

relation, 

c =  \ + & h  ( 3 .  2 - 3 )  

The limiting form of the ballistic solution as h -~r 00 is 



( 3 .  2-4) 

This is the form of the ballistic solution valid in the "overlap domain". 

ing form of the Keplerian solution as h+O to lowest order  in E i s ,  

The l imit-  

-.-- 
(A 

This is the form of the Keplerian solution valid in the "overlap domain" 

requirement that these two limiting forms match, i .  e . ,  

( 3 .  2-5) 

The 

( 3 .  2-6) 

determines the initial condition fo r  the ballistic t ra jectory in t e r m s  of the initial con- 

dition for  the Keplerian trajectory.  

To reduce the algebraic complexity and to gain some insight into the mean- 

ing of these conditions, assume that the initial conditions for  the Keplerian phase 

a r e  given a t  the reference radius so  that 

tz * I ( 3 .  2-7) 
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Then Eqs.  ( 3 .  2-5) reduce to 

- c s z  - 

cos ,dz 

I t  

cos  

( 3 .  2-8) 

Fur the r ,  a s  p i s  a rb i t r a ry ,  to lowest order ,  a s sume  that it is ze ro  so that 

Eqs. (3.2-4) reduce to 
01 

( 3 .  2 - 9 )  

Then Eqs. (3. 2-6) imply that the initial conditions for  the Keplerian and ballistic 

trajectory a r e  related as follows: 

( 3 .  2 -  10) 

These a r e  the relations commonly assumed in "patching" ballistic and Keplerian 

t ra jector ies .  So, to lowest order ,  the matching procedure conforms to intuition. 

3. 3 Matching the Aero-gravity Per turbed and the Aero-dominated Regimes. 

A slightly m o r e  interesting application of the matching principle occurs when 

the aero-gravity perturbed phase is matched with an aero-dominated "skip. It This 

will produce a composite expansion applicable fo r  a currently interesting class  of 

lifting weapon and manned vehicle trajectories.  

The sk ip  solution, correct  to lowest o r  zeroth o rde r  in E ,  fo r  aero-domin- 
ated flight is 



(3. 3-1) 

Recall  that these equations a r e  valid f o r  p = 0(1),  v2 = 0(1),  Y = O(1). 

2.5. 

See Section 

The aero-gravity perturbed solution, co r rec t  to f i r s t  o rde r  in E ,  is 

(3.3-3) 

Recall  that his solution is valid for p = O(E), v2 = 0(1),  Y = O (  1). 

For both solutions, 

See Section 2. 6. 

( 3 . 3 - 5 )  

The limiting form of the latter solution as pl--w (the "overlap" domain form) to the 

lowest order  in E is 

(3.  3-6) 

( 3 . 3 - 7 )  
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Notice that this is equivalent to taking the f i r s t  t e r m  in this expansion fo r  smdlE.See 

Appendix C. The limiting f o r m  of Eq. (3. 3-2) as pl+O (the "overlap" domainform) 

is seen tomatch Eq. (3. 3-7) if 

(3. 3-8) 

This s ame  result m a y  be produced more  formally by expressing Eq. (3. 3-2) in the 

variable p 2 

(3 .3-9)  

and truncating the se r i e s  a t  the second t e r m  

t (3. 3- 10) 

Then requiring, f rom Eqs.  (3. 3-7) and (3. 3-10), that 2Y1 = 1 Y 2  yields 

COS 'bot = cos dot 

r96, = 
(3. 3-11) 

which is the result  given in Eq. (3. 3-8). 

To obtain the limiting f o r m  of Eq. (3. 3-1) as p 1 + 0 ,  notice that as p l d O ,  Y1 + Y o l .  
Then the limiting form of Eq. (3. 3-1) may  be expressed as 

( 3 .  3-12) 

Now to obtain a relation between an angle slightly different f rom Y o l  and P 1' 
observe that f o r  small  y - Yo 1, 

I 

(3. 3-13) 

f r o m  Eq  (3. 3-2) 



so that 

Subs itution of this into Eq. (3. 3- 12) yields 

This matches Eq. (3. 3-6) if  

( 3 .  3-14) 

(3.3- 1 5) 

(3. 3-16) 

which implies that to lowest order  the initial conditions a r e  not affected by a 

transition through this regime. 

neglected when matching a Keplerian conic to a ballistic trajectory.  

This explains why this phase of the t ra jectory was 

Here  the more  formal  matching is made algebraically complex by the fo rm 

Specifically,by expressing Eq. (3. 3-1) in the variable p2,0ne of the skip solution. 

obtains 

which f o r  small E may be expressed a s  

( 3 .  3- 18) 

where pol  = 0 from Eq. (3.3-11) was used. Truncating the s e r i e s  at the 

second t e r m  yields, 



( 3 .  3- 19) 

(3 .  3 -20)  

Requiring that 1v2 - - 2v1 in Eqs. (3.  3-6)  and Eqs. ( 3 .  3-19)  gives 

which is the same  resul t  give in Eq. (3 .  3 -16 ) .  

A description of the t ra jectory in t e r m s  of a ncomposite” expansion is con- 

This expansion is formed by summing the individual expansions and sub- venient. 

tracting their  common limit. (See Appendix C) .  

( 3 .  3-21) 

o r  

where 

( 3 .  3 -22)  

U S $ ,  = c 6 S % ’ o  5 Q z 

and - s+db 
’p - %e- 

Notice that the matching principle has  related all the a r b i t r a r y  constants in the two 

solutions except p 

is coming down f r o m  the aero-gravity perturbed regime into the aero-dominated 

o r  equivalently hO2. This is of no consequence if the trajectory 02 
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' .  

'. 

regime because i ts  value is initially known and is not required for  the lowest o r d e r  

skip problem. 

needed to define the trajectory.  

calculated to next o r d e r .  

found to o rde r  E to determine the a rb i t r a ry  constants in the skip problem to o r d e r  

one. 

t r a r y  constants in the aero-gravity perturbed problem to o rde r  E . 
balancing of o r d e r s  of the problem to obtain matching is a common occurrence.  

solution"' 35' 33) given he re  for  reference. (See Section 2. 13), 

But, if the trajectory is going the other way, the value of Poz is 

To obtain this value, the skip trajectory must be 

Thus, the aero-gravity perturbed problem has to be 

Now the skip problem has to be calculated to o rde r  E to determine the a rb i -  

This uneven 

The composite expansion is closely related to Loh's Irsecond-ordertt 

(3 .  3-23) 

The composite solution has the advantage of: 

solution in the p = 0(1) regime to lowest order,(2) being valid in the p = O(€), 
Y = 0(1) regime to o rde r  E where Loh's solution is  only valid to o r d e r  one, (3)  is 

numerically s impler  to use. 

(1) conforming to the "second-order" - 

Though it does not have the range of validity of Loh's solution, in its limited 

regimes it is more  accurate.  

rently interesting classes  of trajectories.  

of an Apollo type which has  the objective of losing velocity in excess of c i rcular .  

satell i te velocity. 

of a lifting weapon. 

Its range of validity does include a number of cu r -  

One is  a super c i rcular  skip t ra jectory 

The second trajectory is a negative lift trajectory character is t ic  

Unfortunately, the solution in its present  fo rm is incapable of defining super 

c i r cu la r  orbit  af ter  a skip occurs ,  a s  the next o rde r  solution h a s  not been included. 

But resul ts  up to this point a r e  in excellent agreement with numerical  solution. 

(See Fig. 3. 3- 14 

n e a r  orbi ta l  velocity. It t r ave r ses  the aero-gravity perturbed regime at large flight 

path angles and then goes back into an aero-dominated regime at low altitudes. This, 

a lso,  is in agreement with the numerical solutions. (See Fig.  3. 3-2.) 

The lifting down trajectory s t a r t s  in a n  aero-dominated regime 
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CHAPTER 1V 

THE DYNAMICS OF THREE-DIMENSIONAL THRUSTING FLIGHT 

4. 1 Introduction 

To this point, only two-dimensional nonthrusting flight about a spherically 
symmetr ic  planet, with a nonrotating atmosphere,  has been considered. The 

three-dimensional form of this  problem is handled by noting that lift forces ,  out of 

the velocity-vector, planet-center plane, simply rotate this plane and leave the two- 
dimensional in plane problem unaltered. This,  in effect, says  that the dynamic 

equations f o r  the in-plane out-of-plane problems a r e  cofipletely uncoupled and may 

be  t reated separately.  The thrusting problem similar ly  uncouples if thrust  is r e -  

volved into an in-plane and out-of-plane component. 
The addition of planetary oblateness and a rotating atmosphere couples the 

in-plane and out-of-plane problem, but not necessar i ly  to lowest order .  

i t  will be shown that these effects, though appreciable, always enter to higher order,  

so that the resul ts  of the two-dimensional nonrotating spherically symmetr ic  analy- 

s i s  to lowest order  will remain valid. 
4. 2 Nonthrusting Three-Dimensional Flight 

In fact ,  

Consider first,  the problem of nonthrusting three-dimensional flight in a ro-  

tating atmosphere surrounding an  oblate planet. 

wri t ten in nondimensional fo rm a s  

The dynamic equations may be * 
(4. 2-1) 

(4. 2- 2) 

where 5 and 1 a r e  the position and velocity vectors ,  p i s  the atmospheric density, 
- c is a three-dimensional aero-dynamic coefficient, -W v i s  a wind velocity vector 

given a s  

where 

angular velocity of the planet). 

equatorial  wind to the c i rcu lar  satellite velocity (or  orbi ta l  period to rational period)! 
a8 

is the angular velocity of the atmosphere (assumed to be the same a s  the 

The sma l l  parameter ,  E 2, is  the the ratio of the 

The same quantities a r e  used to nondimensionalize mass ,  lengths and t ime 
Chapter 11. 

a s  in 
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(4. 2 - 4 )  

The p r e s s u r e  is ,  a s  usual, assumed to be related to position by the hydrostatic 

equation. 

(4.  2-5) 

where E is the ratio of atmospheric scale  height to planetary radius and 

where a Coriolis correction has  been included as  the atmosphere is assumed to  be 

rotating with the planet. Fu r the r  p r e s s u r e  is related to density by the equation of 

s ta te  

(4 .  2-6) 

The gravity acceleration vector, g , is  the negative gradient of a potential, v, given as 

(4.  2-7)  

(4 .  2-8)  

where J 2  is the second spherical  harmonic coefficient and L i s  the planetary 

latitude. As might be expected J i s  related to  € and is approximately 

( 4 .  2-9)  

This  simply states that the planetary rotation i s  the chief cause of the oblateness. 

The additions of planetary rotation and oblateness have thus introduced only 

one new small parameter  into the system, ra ther  than two, as might have been 

originally surmised. A detailed analysis of the two parameter  systems is over -  
bearingly complex, if perfectly straightforward. Some enlightening observations a r e  
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possible, though, without the benefit of the complete analysis. 

The fo rm of the hydrostatic equation sti l l  requires  that heights above the 

planetary radius be rescaled to order E 

agaill introduce an aerodynamically dominated problem where gravitational acceler-  

ations do  no^ enter to lowest o rde r .  The solution is therefore identical to the ae ro -  

dominated solution of Chapter II. 
the effect of the rotating atmosphere should properly be accounted for ,  since € 

' for  all known planetary atmospheres except Venus.(see Table I) 

f o r  a nonsingular solution. This w i l l  

It is interesting to observe that to next order ,  
>€ 2 1  

F o r  densities of o rde r  E 1, aerodynamic fo rces  do not enter to lowest o rde r .  

This implies that the lowest order  problem is a Keplerian conic. 

the planetary oblatenss enters  f o r  all planets except Venus (as E f > E for  these 

planets),  In fact, ze ro  lift trajectories,  perturbed by drag and oblateness, have 

been extensively treated in the literature. 

To next order  

(85 )  

If a local rotating coordinate system is used to express  the dynamic equa- 

tions, as in Chapter 11, there  is no gravity contribution to lowest o rde r .  Fu r the r ,  

if a local value of g and r a r e  used tonondimensionalize the equations, the solu- 

tions developed in Chapter 11 a r e  valid to o rde r  E 1, including the effects of oblate- 

nes s  fo r  motion in the planet vehicle-velocity-vector plane. 

ponent of gravity can be made of little consequence by compensating for it with a 

l a t e ra l  applications of lift . 

0 0 

The out-of-plane com- 

When the velocities a r e  the order of E 2 ,  the o r d e r  of the planetary wind 

velocity, the problem is obviously better defined in t e r m s  of a coordinate system 

fixed to the planet. 

following form: 

In such a coordinate system, the dynamic equations take the 

(4.  2-10) 

(4. 2 -  11) 

where r and v a r e  position and velocity vectors in the rotating coordinate - - 
system and g is the negative gradient of a pseudo-potential associated with the ro- 

tating planet, 

where 

(4. 2 -  12) 
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The hydrostatic equation in this coordinate system is simply 

(4.  2-14) 

P r i o r  to considering the lower velocity flight, one interesting observation concern- 

ing the aerodyanamically dominated problem will be made. F o r  altitudes of o rde r ,  

€ 1, and densities of order  one, flight path angles of o rde r  one; or densities of 

o r d e r  E ,  flight path angles of order  one, and velocities near  c i rcular  velocities, 
the following lowest o rde r  problem applies: 

(4.  2- 15) 

(4 .  2-16) 

Notice that both density and t ime may be eliminated to give 

(4 .  2- 17) 

which indicates that flight in this regime follows a path along constant p re s su re  sur- 

faces.  

angle case,  and of order  E 

cluded that the direction of g to lowest o rde r  is constant. 

angle as measured f r o m  the local g vector,  one may integrate the equations to give 

the solutions in Chapter 11. 

included. The next order  t e r m  is  of o rde r ,  E 

geometric dependent form as 

Observing that the range covered is of o rde r  E for the large flight path 

f o r  the small  flight path angle case,  then it is con- 
1 - 

Defining the flight path 

The lowest order  oblateness t e r m  has thus been 

and may simply be written in only 2’  
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which may be integrated i n  

of lift,  as the acceleration 

i ts  scalar f o r m  o r  i ts  effect removed with the application 

is always perpendicular to the velocity vector.  So a so-  

lution correct  to order  E 

oblate rotating planet with a r e a l  atmosphere in t e r m s  of the p re s su re  and the geo- 

me t ry  of the planet. 

rotating atmosphere, at  low velocities, in this coordinate system. This implies 

that lowest o rde r  results previously obtained for  two-dimensional flight a t  near  

sonic velocities a r e  applicable in this coordinate system, if flight path angle is 
measured from the local g vector. 

4. 3 Thrusting Three-Dimensional Flight 

is obtainable for  the aerodominated regime about an 

Finally, it is seen from Eq. (4. 2-11) that there  is no contribution of the 

The dynamic equation for thrusting three-dimensional flight in a rotating 

atmosphere surrounding an oblate planet may be written in nondimensional form as 

where a is the aerodynamic acceleration vector -A 

and aT is the thrust  acceleration 

r 
S T  - ~VI 

- - -  
Other variables a r e  as defined in Eqs. (4. 2-2). A s  migk be expec 

(4. 3-2) 

(4. 3- 3) 

(4.3-4) 

:d, the addition 
of thrust  to the problem adds a third parameter ,  E 3 ,  the ratio of the thrust  acceler-  

ation to the reference value of gravitational acceleration (possibly large o r  small) .  

A host of possibilities must now be considered, depending upon the relative size of 

the components of x, g, aA, and E ~ .  

- 83 - 



Some of the possibilities a r e  discarded by recognizing that for  thrust  to be 

useful in aerodynamic flight,its velocity component must be of the same o r d e r  as,or 

la rger  than,the aerodyanamic drag. Fur ther ,  if the lift-to-drag ratio is grea te r  

than one, there  is little advantage to thrusting in a direction other than along the 

velocity vector.  

Hence, the thrust  vector can be expected to be mainly along the velocity vector and 

of a magnitude greater than the drag for aerodynamic flight. 

Lateral  forces  a r e  more efficiently developed with the use of l i f t .  

F o r  orbital flight where the aerodynamic forces  are negligible the thrust  

vector can be scaled only in reference to the local value of g. 

value of the thrust acceleration is small  in comparison to g have recently been 

t r eat e d ext en s iv e ly . ( 2 0 J  72) The intermediate range where thrust  accelerations and 

gravitational accelerations a r e  of the same order  is more  difficult and has  largely 

not yet been treated in the l i terature.  

Cases where the 

The classical  case of impulsive thrust ,  where the thrust  acceleration domi- 

nates over any gravity-and possibly aerodynamic-acceleration takes on an interes- 
ting interpretation in the light of the method presented here .  

lowest order  problem is 

F o r  E 3  large,  the 

where the t ime scale is now of order  . These can be integrated to give 
3 E 

the familiar result, 

The effect of g and a can now be included in the higher order  problem a s  -A 

(4.  3-5) 

(4. 3 - 6 )  

( 4 . 3 - 7 )  

which a r e  easily integrated to give, 
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(4. 3-8) 

Consequently, the solution for  "impusive" t ra jector ies  of relatively long duration 

may be written as a n  expansion 

(4.  3 - 9 )  

which correct ly  tends to the classical  impulsive limit as E 3 4 ~ .  
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CHAPTER V 

OPTIMAL FLIGHT TRAJECTORIES 

5. 1 Introduction 

A number of numerical  methods a r e  now available for  the computation of 

complicated optimal flight trajectories.  (541 75’ 769  7 8 9  8 1 p  27’ Analytical treatment 

of s imilar  but often simpler problems must  therefore be prefaced with a few justi- 

fying comments. 

The s t ructure  of optimal flight t ra jectory problems is extremely complex. 

The dynamical system and the associated cost functions a r e  highly nonlinear. T h e r e  

a r e  numerous bounds on both the state space and the control. 

many optimal trajectory problems have local extremals,  t ra jector ies  that minimize 

the cost with reference to all neighboring t ra jector ies ,  but a r e  not the absolute 

minima. A numerical  optimization scheme will always locate one of these extre- 

ma l s ,  but can never te l l  if this i s  the absolute minimum, o r  even how many other 

extremals  exist. 

As a consequence, 

Analytical formulation of the problem can often identify the possibility of 

extrema1 solutions, even when the problem cannot be solved in detail. 

investigation can then be made to determine the optimal trajectory f rom the admit-  

ted extremals. 

obtained, they a r e  valuable fo r  checking existing numerical  solutions, interpreting 

numerical  results and formulating more complex problems. But even short  of for-  

mulating the complete problem, information concerning the general  s t ructure  of the 

dynamical system can often be useful fo r  the numerical  investigator. F o r  example, 
the knowledge that a maximum r a n g e  problem will never enter the high load factor 

aerodynamically dominated regime, where range payoffs a r e  small, would allow 

dispensing with a numerically cumbersome constraint on the trajectory load factor.  

Numerical 

When analytical solution for  portions of the problem can be 

Analytical investigation of optimal flight t ra jector ies  is therefore worthy of 

pursuit .  This has been generally recognized. (47J 60) The problem encountered 

was that the dynamical system was far too complicated f o r  analytical treatment.  

Any ad  hoc simplification of the dynamic sys t em leads to a trajectory that violates 

the assumptions made in the simplification. 

in developing a systematic approximation procedure to avoid this difficulty. 

Here  considerable c a r e  has  been taken 

An optimal t ra jectory associated with any lowest o rde r  problem will only be 

presumed valid f o r  that particular 

one regime and goes into another regime, another optimal trajectory problem must  

regime of flight. When the t ra jectory leavks 
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be solved. 

valid fo r  the two regimes. 
optiliial trajectory problem be solved in a large number of regimes.  

a r c s  must then be arranged in some combinatorial fashion to obtain the total tra- 

jectory. 

tion about an otherwise analytically untractable problem. 

The two optimal t ra jector ies  then may be matched to give a t ra jectory 

This has  the distasteful aspect  of requiring that a given 

The resultant 

The precedure's redeeming feature is that i t  gives considerable informa- 

5 .  2 A Formulation of a General Flight Vehicle Optimization P rob lem 

It s eems  advantageous to formulate a problem, substantially m o r e  compli- 

cated than one can presently solve, in o rde r  to i l lustrate the features that a r e  com- 

mon to all the problems that will be considered here .  

The dynamic equations describing motion of a flight vehicle in a rotating 

planetary atmosphere a r e ,  (See Chapter IV) 

(5 .2 -1 )  

where r and v a r e  position and velocity in the rotating coordinate system, - - 
2, 
tational field in this rotating coordinate system, and a is the thrust  and aero-dyna- 

mic acceleration. 

is the angular velocity of the rotating atmosphere,  g = g(r)  is the pseudo gravi- 

- 
The two components of a a r e  given as, - 

( 5 . 2 - 2 )  

where p = p ( i )  is the atmospheric density, m is the vehicle mass ,  c is a 

three-dimensional aerodynamic coefficient supposedly less sensitive to, but not 

necessar i ly  independent of, atmospheric properties and velocity magnitude, 2 is 

the thrust ,  either of aerodynamic origin and thus also dependent on atmospheric 

propert ies  and velocity, o r  of rocket origin, and thus a t  least  independent of thevel-  

ocity. 

- 

F o r  the purposes h e r e  it will be sufficient to consider aT a n d a A  and to be 

the control over  the vehicle where each belong to a se t  AT and AA whose bound is 

possibly a function of position and velocity, specifically 

(5 .  2 - 3 )  
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Fur the r ,  the total acceleration, 2,  is  bounded in magnitude, and possibly 

direction, due to the physical lirnitations of the vehicle and its contents. Explicitly, 

* ‘ e . r + Q f +  < A  ( 5 .  2-4) 

F o r  the optimal control problem, 

with an equation describing the variation of vehicle mass due to possible fuel expen- 

diture.  Changes of m a s s  due to ablation of vehicle heat shield is usually negligible. 

so I 

the dynamic equations must be supplemented 

( 5 .  2 .  5) 

where the r and v dependence has been included to allows for possible ae ro -  - - 
dynamic propulsion. 

A general  cost  component of the state may be introduced as 

( 5 .  2 -6)  

which can include minimum heating, maximum range, minimum fuel ex- 

pended, minimum time, or  specifically all the problems that will be considered 

here .  

Then Eqs.  (5. 2 - 1 ,  5, 6) a r e  a set  of equations sufficient to define a state of 

the aerodynamic vehicle given suitable boundary conditions and specified control, 

The associated Hamiltonian is then (See Appendix B.) 

( 5 . 2 - 7 )  

where the operator (Ex) is taken as an antisymmetric matrix.  

Now requiring that H be a minimum with respect to a T  and 5 A yields a s u r -  

prising result .  

acceleration 5, then for  regions of state space when the system is not capable of 

reaching the acceleration boundary, the minimization of H may be done independ- 

ently f o r  a Fur the r  as aT  only enters  f m  and f in t e r m s  of i ts  magni- -T 0 

tude aT, then the direction of a T  is determined by the direction of A 

F i r s t  as a T  and a a r e  related only by the constraint on the total -A 

and&*. 
. In fact, a is  

-V -T 
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anti-parallel toXv, (See Fig. 5 .  2-  1 .) 

this more complex system. 

This is the Lawden(20)result extended to 

.e. IF 

(possibly on the boundary of AT) I TaT 

AT(r ,  v) - assumed symmetric 
about zero value of ST 

h 
Y 

direction of aT that minimizes 
the scalar product AVT a-T 

t 
Fig 5.2-1 Optimal Direction for 

Then the part of the Hamiltonian that depends on aT is 

( 5 .  2-8) 

which is an equation from which the scalar value of aT that minimizes H 

can be determined. 

The conditions for minimum H with respect to a a r e  somewhat simpler -A a s  

f m  but is complicated by the unsymmetrical nature of a does not appear in f or  -A 0 
AA. (See Fig. 5. 2 - 2 . )  

velocity vector and 
axis of symmetry 

f aA that gives 
minimum scalar product &,,aA 

Y 

Plane of &,and 

Fig. 5 .  2-2 Optimal Value of 
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AA is symmetric with respect  to a n  axis (the axis coincident with the velocity vec- 

t o r  and the orientation of a 

the direction of a 

This determines the required "angle of bank" of the vehicle. 

of the other two components of 5 associated with the vehicle's "angle of attack" is 

m o r e  difficult, 

about this axis  is determined in the same  manner that -A 
was specified. Thus a x  always l ies  in the plane o fv  - and X v .  -T - 

But the determination 

Notice that the optimal value of a a * is specified by the condition that a -A, -A 
plane perpendicular to 1, is tangent to AA a t  the point 52 . 
terms of a tangent to the surface AA is a source of endless analytic grief in the l i ter-  

a tu re  (47' 60' 529 ll). This is basically because the aerodynamic coefficients, - c,  

f o r  hypersonic flight velocities, is specified in t e r m s  of a Newtonian drag polar 

whose trigonometric representative makes it near impossible to invert. (See 
Appendix F . ) . 

Determining &g in 

A 

The method of circumventing this impasse,  proposed he re ,  is to consider 
<< 

can only 

A s  this number may be made arbi t rar i ly  large,  the loss of 

the set ,  AA, only composed of a number of discreet  points s o  that aA 
take onthesevalues.  

generality seems  unimportant. 

tangency condition now becomes a switching condition. 

components of A 

switching occur swhen  a possible change in ziA is related to X v  by 

The advantage accrued is that the troublesome 

Specifically, for the two 

A' a Avl, and Av2 along and normal  to the axis of symmetry of A 
V '  

(5. 2-9) 

(See F i g .  5. 2-4). 

a that minimizes H,  is determined as a function of A . -A' - V  

a r e  integrable for  constant aerodynamic coefficient 5 ,  then relations for  the X v  
associated with the piecewise constant control may be obtained. 

related to the perturbation variables around the solutions fo r  constant 5 .  
caiiy, i f  a soiution i o r  - r and - v exists and is expressibie in t e r m s  or' 

la ter  t ime, 

Thus, the piecewise constant value of the aerodynamic control, 

The other advantage of this approximation is that if the dynamic equations 

They a r e  simply 
Specifi- 

and - r at  some 

4. T 

An interesting practical  method of representing empirical  drag polar data 

f o r  optimal control purposes has  been suggested by Prof .  W .  E.  Vander Velde. It 

basically involves determining the relation between the angle of attack of the vehi- 

cle and the angle between the drag polar 's  normal  and i ts  axis of symmetry ( see  

F i g .  5. 2-3). 

a n  optimal value of c , once A 

As this angle is also the angle between the velocity vector and Xvfo r  * 
and v a r e  known c is easily determined. - - - -V 
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Fig 5.2-3 An Emperical Method of Determining 2'1' from Xv 
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I 

F ig  5.2-4 Switching Condition for a Discrete Drag Polar  
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then 

(5. 2-10) 

and the relation for - A v1 (1) is ( see  Appendix A) 

(5.2-11) 

(5.  2-12) 

So, complete specification of the trajectory,  the adjoint variables and the 

control in a piecewise fashion is possible for t ra jector ies  that have integrals for  

constant values of the aerodynamic coefficient. This approach is obviously of little 

advantage fo r  numerical computation, but will be useful in the analytical investiga- 

tion he re ,  in determining the general  character  of opt imal  trajectory problems. 

One other device that will be continually used is the elimination of t ime 

f r o m  the system equations. 

pendent variable. 

control problem. 

dition is the cost coordinate for  the particular problem. 

equations, written with x as the independent variable,  are  

Some c a r e  must be made in choice of an alternate inde  

It must  be monotonically increasing for  a well defined optimal 

An alternate choice of variable that obviously satisfies this con- 

The preceding dynamical 

0 

I 

EJ 

(5. 2-13) 
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The advantage that has  been obtained is not apparent he re ,  (except the possible r e -  

duction of the number of variables) but will be in the work that will follow. 

estingly observed that these equations define a general  c lass  of optimization pro- 

blem known as "minimum time" problems, heavily studied in the field of optimal 

control. 

I t  is inter-  

5. 3 Optimum Aerodynamic Plane Changes 

5. 3. 1 Introduction 

Currently, there  is a large interest in aerodynamic plane change 

maneuvers (71' 7 9 J  80) This is due to the sizeable advantages accrued in aerodyna- 

mic  plane changes of orbits over normal impulsive techniques. 

indicating the reason fo r  this advantage, will be given later 
A cursory analysis, 

5. 3. 2 The Aerodynamically Dominated Plane Change 

Over a phase of the trajectory where the velocity is t h e  order  of orbital  

velocity and the p r e s s u r e  is the order of the wing loading, o r ,  alternately where 

(v2 -1) = O(E +) and p = O(E)  the following nondimensional dynamical equations a r e  

valid, to lowest o rde r ,  

where is the vehicle roll  angle and 3 a heading angle. 

A rearrangement convenient f o r  the optimization to be done he re  is  

(5 .3 .2-1)  

(5 .3 .2-2)  

I 
where v has been introduced for analytical convenience. The Hamiltonian 

is 

- 9 5  - 



(5 .  3.  2 - 3 )  

As the independent variable.  h v  does not appear in H, H is a constant. 

ated adjoint equations a r e  

The associ-  

>: 
We will seek a minimum loss of velocity during the maneuver s o  

The final velocity is unspecified, so 

(5 .  3. 2-4) 

(5.3.2-5) 

H W t )  'c H = 0 

The initial and final values of 3 a r e  presumed given to make the problem wellposed. 

Therefore,  X Q  = X Q o  #O. The final of Y i s  either given o r  

F o r  a minimum of H with respect to 4,  the vector (CL c o s + ,  CLsin+) should be 

colinear and opposite in direction to ( -rr  - rS' ) (See Fig,  5. 3. 2-1). SO 
c a  1 

(5 .  3. 2-6) 

* 
The possible zero value of the cost component of the adjoint vector will be inclu- 
ded for correctness.  See Appendix B. 
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(5.3.2-7) 

F o r H  to  be a minimum with respect to - cL , - cL  is a t  its maximum value if 
t cD cD 

(5. 3.  2-8) 
2 

2 But, notice that (X t -) cannot be ze ro  as X $  f 0 for  a well posed prob- 2 0 cos Y 
L 

lem, SO 2 is at its maximum value fo r  all v. To obtain an expression fo r  

optimal value of 4,  substitute Eq. (5. 3 .  2-7) into Eq. (5. 3.  2-6),and eliminate 

this yields 

CD 
the 

A 
Y 

(5. 3. 2-9) 

This expression seems  to be satisfied by two angles, but the ambiguity is resolved 

by realizing only one angle satisfies the minimum principle ( see  F i g .  5. 3 .  2 -1).  

With the control specified, it can be substitute into the dynamic equations, 

Eqs. (5. 3. 2-2),and they integrated to determine the a rb i t r a ry  constant 

and the final velocity interms of the initial and final values of $ and Y ,  A ra ther  

simple observation will preclude this investigation. 

$0 

X F o  

Observe that the bank angle is symmetr ic  with respect to Y = 0 and that as 

TT 4 -w 5 + =  y-P - - 7 

If the initial and final values of Y a r e  zero,  the only bank angle that satisfies these 

conditions is 2 . 2 
The relationship between $ and v for  this special  c a s e  is obtained f rom 

Eq. (5. 3.  2 - i )  as 

(5 .3 .2 -19  
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Butobserve that the original dynamic equations, Eqs. (5. 3.  2-1) were  insensitive to 

how the plane of the maneuver was defined, as gravity accelerations did not enter .  

So if  the initial and final directions of the velocity vector a re  taken to define the 

plane of the maneuver, the optimal control is simply to apply maximum 

in this plane. The velocity change required to perform the maneuver is then cL 

5 
simply 

( 5 .  3.  2- 11) 

1 

where A'$ 
result. 

is the angle between the initial and final velocity vectors,  a now obvious 

To make the advantages of aerodynamic turning over impulsive thrusting 

similarly apparent, observe that the plane change accomplished with a single impul- 
sive thrust  is given by 

(5.3. 2- 12) 

(SeeFig. 5 .  3 .  2-1). 

ICL .In +. CL co. 4) 

(-".;. * -A?) 

Fig. 5. 3. 2-1 Optimal Direction of the Lift Vector 
F o r  a small  plane change, Eqs. (5. 3.  2 -11) and (5. 3 .  2. -12) reduce simply 

to 

(5. 3. 2- 13) 

A$ 
4 3  

A$i = 

so that a vehicle with a lift-to-drag ratio of g rea t e r  than one has  the possibility of 

performing a turn more  efficiently by using lift to develop side force and propulsive 



f o r c e  to cancel drag. 

Notice when the A v  is the order of twice that necessary to escape the planet- 

a r y  gravity field, a n  impulsive maneuver can be acoomplished that takes the vehi- 

cle to infinity, 

orbit .  

v e r s  gives 

performs a plane change a t  no cost, and returns  to the original 

Using this to define the interesting limit of aerodynamic plane change mane- 

(5.  3 .  2-14) 

cL 

CD SO, f o r  example, a vehicle with a 

f o r  plane changes of l e s s  than one 

(7 '' 7 9 y  *')Unfortunately surrounded with an unnecessary amount of complexity. 

of 2 can out-perform an impulsive maneuver 

radian. This is a much reported result ,  

5 .4  The Minimum Velocity Lost Problem 

5.4. 1 Introduction 

The objective is to control a lifting re-entry vehicle so that it looses mini- 

This type of trajectory has  been proposed (78) for  a reconnaissance vehicle 

mum velocity in flight to a prescribed altitude, and possibly a prescribed flightpath 

angle. 

desiring a close planetary encounter with minimum loss of kinetic energy. It a lso 

has obvious application to a lifting weapon trajectory with an objective of reaching 
Some near  surface target  with minimum loss of velocity. Numerical verfication f o r  
some of the analytical observations that follow may be found in Ref. (78) .  

5. 4. 2 The Minimum Velocity Lost Trajector ies  in the Aerodynamically 

Dominated Regime 
The dynamical equations, correct to lowest o rde r  in E ,  fo r  nondimensional 

p re s su re ,  p, of o rde r  one, nondimensional velocity, v, of o rde r  on and flight path 

angie, Y, oi any o rde r ,  a r e  (or p = u i €  j ,  v - 1  = tjje j ,  'i = D i t  j ( S e e  Sections 

2 .  5 and 2. 9.) 

1 - 2 .  
i 

(5 .4.  2-  1) 
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I 

where v2 has  been introduced for  analytical convenience. The Hamiltonian is  

(5 .4 .  2-2) 

It is both a constant and zero  a s  the independent variable, v 2 ,  does not appear on 

the right hand side of the system equations and the final value of v 2  is unspecified. 

The associated adjoint equations a r e  

(5. 4. 2-3) 

The boundary conditions for  Eqs. ( 5 . 4 .  2-1, 3) a r e  specified intial and final values 

of the state variables, v t 2 ,  y, and p o r  zero values for the associatedadjoint variables 

' with the possible exception of the final value of the adjoint variable, X v t 2  which may 
1 

D 
be -1. For minimum H with respect t o r ,  the scalar  product of (Xpo sinY, - $ X y )  

cL 

cD 
- )  must be a minimum. This has a simple interpretation in t e r m s  of a and 6, 

a two dimensional Euclidian plot of the two vectors.  

that minimum H occurs when (-, 

It is seen from F i g .  5 . 4 .  2-1, 

has  the largest  projection on 1 cL  

'D 5 
(Ap 

- $ A  e). It is then easily seen that the following possibilities exist: 

(1) When X sinY = 0 and h y  # O  then 
P 

C 
is maximum for X Y  < 0 and 5 

L~ is minimum for  X Y  > 0 . CD 
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cL Fig. 5.4.2-1 Optimal Value of - - 
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( 2 )  When A sinY # 0 and XY = 0 then 
P 

is  minimum for  A sinY > o 5 P 

- is maximum for  A sinY < o 
P 

cD P 

and - is admissible.  (3) When X sinY = 0 and A = 0 any value of - 

(4) F o r  A sin Y = 0 and A 

LL 
P Y cD =D 

# 0 over any interval of the trajectory,  
P Y 

X = 0 and 3 = 0 
dX 

P d v  
The final p r e s s u r e  is unspecified o r ,  

C 
siny = 0 and dY = - L  L = 0 .  But, condition (1) above, dvz 'D v2' 

cL 0,  so this exists only when final p is unspecified, % +  requires 

(5) F o r  X s in  Y # 0 ,  X Y  = 0 over any interval of the trajectory,  
P 

which is only possible if C O S Y  = 0.  (A vertical  trajectory.)  

(6) F o r  A sinY = 0 and X Y = 0 over any interval of the trajectory,  
P 

(unspecified final p )  x, - 0  

o r  

S \ n  d = c )  

d hu a 
Lnrt 

(unspecified final Y )  
which is only possible if the final Y and p a r e  unspecified, a poorly 

posed problem. 
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1 .  . 
1 -  

(7) When A sin Y # 0 and A 
P Y 

# 0 it is convenient to make the assumption 

L that the ($- , C )  vector can only taken discreet  values. Then 
D D  

and integrable equation fo r  (A sinY, A Y  ) may be obtained by com- 

bining Eq. (5. 4. 2 -1) and (5. 4. 2-3) to give 
P 

o r  f o r  piecewise const. values of CL, 

h W I  - x dn =2>* (Slndn,, - bn&\ 
4* 

where (5 .4.  2-4) 

It is seen f r o m  these conditions that the vehicle: 

cL to a specified Y if the final p is unspecified, (1) turns  at max. CD 
for  final p specified, final Y unspecified, (2) turns  a t  non-max. - cL  

cD 

cL 
%- when = O -  

passing through max. 

71 (3) stops turning and descends o r  ascends a t  min. C when Y =  f 7 D 

when final p specified and final Y is unspecified. 

(4) conducts a lifting up-down o r  down-up maneuver specified by 

when Y = 0 ,  to meet fixed final cL 

5- Eq. (5.4. 2-4), passing through max. 

values of p andY. 

5.4. 3 Minimum Velocity Lost Trajector ies  in the Aero-Gravity 

Per turbed Regime. 

All optimal trajectory problems will have a particular sample s t ructure  in 
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this regime. 

CD. 

Y = 0(1), p = O(E), h = O ( E )  a r e  

The optimal value of the control will be a constant value of CL and. 

This minimum velocity lost problem will serve to i l las t ra te  this result .  

= 0(1), 
2 The f i rs t -order  perturbation equations describing flight for  v 

(5. 4. 3- 1) 

where p has been introduced as the independent variable. These equations 
a r e  suitable fo r  system equations fo r  an optimal control problem if p is restr ic ted 

to monotonic variation and the fictitious variable p is introduced by the equation, 
1 

The Hamiltonian associated with Eqs.  (5. 4. 3 - 1  - 2) is then 

(5 .4.  3-2) 

which is independent of p and thus constant. The associated adjoint equations 

a r e ,  

(5 .4.3-4)  

I 
to that A The boundary conditions 

a r e  specified initial and final values of p and Y , o r  the associated X and zero,  
P Y 

with the additional condition that H = 0 if  ei ther the initial o r  final value ot p is not 

specified. As we a r e  seeking a maximum final v , AvZf = - 1  (or  possibly 0) .  

ing result  that CL and C,, a r e  constant, as  both A v  
Fig.  5.4.  3- 1 .) 

variation with p is specified by Eq. (5. 4. 3-3). 
P I t 

2 

Requiring that H be a minimum with respect to the control gives the su rp r i s -  

a r e  constant. (See 2 
and A cos 
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Fig 5.4. 3-1 Optimal Control for Minimum Velocity Loss Aerogravity 

Perturbed Problem 

If the final flight path angle, Yf ,  is unspecified 

A cos Yo = 0 and the optimal value of CL i s  zero.  

and occurs in this regime, then 

5. 4. 4 Minimum Velocity Lost Trajectories in the Small Flight Path 

Angle of Low Density Regime 

The behavior of the dynamic equation in the low density regime is somewhat 
1 2 1 - 

different if flight path angles a r e  order,  E 2 .  

h = O(E), the perturbation equations, correct  to lowest order  in Y and order  E 

v 2  are (See Section 2.9.)  

F o r  v = 0(1), A = O(E), Y = O(E "), 

- 
in 

(5. 4. 4- 1) 

As Y might well go through zero,  making p a non-monotonic variable, the equations 
must be rearranged in the following form: 

- 105 - 



(5. 4 .  4-2) 

These a r e  suitable system equations for the optimal control problem. 

Hamiltonian is  then 

The 

2 and i s  both constant and zero a s  the independent variable, v ,  i s  also the cost. The 

adjoint equations a r e  

( 5 . 4 . 4 - 4 )  

?he boundary conditions fix the initial and final values of p and Y o r  the 

respective values of A and A 
P Y 

i s  sought, X v  

a r e  zero.  As a maximum value of the final velocity 

= -1 (or possibly 0). 2 '  

1 andF gives the con- cL 

CD D 
Requiring that H be a minimum with respect to 

dition illustrated in F i g .  5. 4. 4 -1  . 
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Fig. 5.4.4-1 Optimal Control for Minimum Velocity Lost i n  
the Small y Regime. 

-- 
dAY - 0 on any Notice that no a r c  where k = 0 exists because for  A and - - 

Y Y dP 7 
- L .  a r c  requires A = 0. But for  both A and A to be ze ro  would require A v  to be zero,  

if H = 0. 
P P Y 

A s  the complete adjoint vector cannot be zero,  no such a r c  exists.  F u r -  

ther ,  if the initial velocity is subcircular so that (1 -vT)is l negative, the condition 
0 

A = 0 can never exist, because the adjoint equation for  A is divergent. If 

(1 - 7) is positive,the value of A can oscillate, so multiple positive and negative 

values can result. 

Y 1  Y 
vo Y 

%gain some insight into the s t ructure  of the problem, consider the case  
1 when (1 - 7) = 0.  A is then a constant. By examining the Hamiltonian, 

vo P 
LL Eq. (5. 4 .4 -3 ) ,  it is seen when Y = 0 ,  <;D is a t  is limiting value and is the same 

sign as A . 
Y 

The adjoint equation may be implicitly integrated as 

( 5 . 4 . 4  -5) 

c L  

Y cD 
which indicates that A can p a s s  through ze ro  (and thus - )  a t  least  once. 

If the final value of Y is unspecified then A 

occur.  

cular satell i te velocity will at most have i ts  t ra jectory turned up and down once to 

mee t  some specified final p and Y with minimum loss of velocity. 

= 0 is the final value and no switchings 
Y 

These conditions may be interpreted to mean that a vehicle entering a t  c i r -  

5.4. 5 Minimum Velocity Lost Trajector ies  in Equilibrium Glide Regime 

The dynamic equations previously used are adequate for  describing flight a t  

small flight path angles where the flight path angle is changing rapidly. F o r  small  

flight path angles that a r e  varying slowly the following dynamic equations a r e  valid, 
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to lowest order  in E 

(5. 4. 5-1) 

2 These a r e  simply algebraic equations relating v , p, CL and CD. 

(5. 4. 5-2) 

(5. 4. 5-  3) 

2 
cL The first equation, Eq. (5. 4. 5- 1) implies that for a maximum v 

should be a s  large negative a s  possible. 

path angle necessary to maintain this condition. 

at a given p, 

The second equation gives the small  flight 

These equations serve to define the upper limit boundary on all capture man- 

euvers, that is, the maximum velocity that a vehicle may have and sti l l  be kept in 

the close proximity of a planet with negative lift. 

cular velocity desiring to be captured must dip into an atmosphere and fly up to the 

boundary from below. 

5 .5  The blaximum Range Problem 

5. 5. 1 Introduction 

An obvious objective in the control of a hypervelocityflight vehicle is to ob- 

Some insight into proper regimes for the formulation of this 

Observing that a 

Thus, any vehicle with super c i r -  

tain maximum range. 

problem may be obtained from the form of the dynamic equation. 

nonthrusting vehicle has an amount of total energy that is expended in the pursuit of 

range, it is natural to express the rate  of change of this energy with respect to 
7 

range. F o r  vL. = 0(1), h= O(E) ,  Y = 0(1), 8 = 0(1 

(5.5.1-1) 

This equationmust have 8 or p rescaled, which implies that there  a r e  only range 

gains the order  of the planetary radius when the density is order  E , Then for 
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v 2  = 0(1), h = O ( E ) ,  Y = 0(1), 0 = 0(1), p = O ( E ) ,  to lowest order ,  the equation is 

(5.5.1-2) 

This implies that there  a r e  no lowest order  range contributions due to the vehicle's 

potential energy. 

Two of the maximum range problems will now be investigated a l l  in the 

low density regime. 

5. 5. 2 Maximum Range in the Equilibrium Glide Regime 

A particularly simple maximum range problem is maximum range in equi l ib  
2 rium glide. 

as the independent variable a r e  ( see  Section 2 .  7) 

The dynamic equation for Y = O(E), v = 0(1), p = O(E), h = O ( E )  with 8 

Substituting the value of p given in the second equation gives 

Now introduce a fictitious range variable, 

-1 i r i e  iiamiiivnian i s  then, 

(5 .5 .2  -1) 

(5.5.2-2) 

(5. 5. 2-3) 

(5. 5. 2-4) 

The adjoint equations a r e  
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( 5 . 5 . 2 - 5 )  

The boundary conditions a r e  a fixed Av', a f r e e  final 8 which requires  that H = 0, 

and a maximum 8 which requires  that A I = -1 (or possibly zero).  
I 

e 
cL To show that c at its maximum positive value, satisfies the necessary 

D 2  
conditions, notice that v -1  is always negative. S o  that i f  A v 2  is negative, 

minimizes H. If A 2 is initially negative it will remain negative 
V 

C -  c ,  I 
cL I cL  5 = %  max 

L 

= cD 1 is a possible extremal.  In fact, it is L (see Eq. 5. 5. 2-5) so that - max cD 
the only extremal in this regime because kv2 = 0 is not admissible,  and A v 2  posi- 

tive requires  C 

covered, as given in Section 2 . 7 .  is 

= 0 which takes the trajectory out of this regime. The range L 

(5 .  5. 2-6) 

5. 5. 3 Maximum Range in the Aerodominated Low-Density Regime 

When flight is  in the low density, near  orbital  velocity regime, the situation 
l 2  1 is slightly m o r e  complicated. 

the dynamic equations a r e  

F o r  Y = O ( f Z ) ,  v - 1  = O ( E T ) ,  p = O(E), h = O ( E )  

The Hamiltonian is 

( 5 .  5 .  3- 1) 

(5. 5. 3-2) 
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The adjoint equations a r e  

. 
axlp - \ 

dvc 
(5.5.3-3) 

cL 1 ..* 
Requiring that H be a minimum with respect to c, gives the usual condition, 

D D  
(see Fig. 5. 5. 3- 1). 

The control can be considered piecewise constant and the system and adjoint 

equations integrated. To gain some insight into the s t ructure  of the problem, con-- 

s ider  Cp = constant and CL variable between a '-posit ive and negative limit. 

valid for  a low-lift drag (Apollo Type) vehicle. 

This is 

Then forX # O  
Y 

(5.5.3-4) 

But X y  cannot be zero  over any finite segment of the trajectory (see the adjoint 

equation),so the trajectory is of a skip variety. It clearly leaves this regime and 

enters  a Keplerian regime . 

.-.k ), - 
P 

* 
L) 
%, 

Fig 5 . 5 . 3 - 1  Optimal Control for Maximum 
Range - Low Density - Aerodominated Problem 
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Maximum range in the Keplerian regime is easily handled by observing that 
>: 

there  is an optimum initial flight path angle Y 

velocity, v to obtain a maximum range, 0 Specifically, 
associated with a given initial 

:;< 0 

0’ 

(5 .5 .3 -5 )  

where the maximum range is given by 

See, fo r  example, Ref. (102).  
2 >k 

0 
F o r  (1-v ) = O ( E 2 )  the optimum initial flight path angle Y 

velocity lost in the skip is 

(5. 5. 3-6) 

1 
O ( E q ) .  The 

and the range gained i s ,  

But the range gained in the Keplerian regime f rom Eq. (5. 5. 3-7) is 

(5 .5 .3-7)  

(5. 5 .  3-8)  

(5 .5 .  3, 9) 

So the dominant range is gained in the Keplerian regime with minimum velo- 

city lost  skips conducted to reach the proper  flight path angle. 

lost in the aerodynamically dominated regime were treated in Section 5 .4 .  2 .  It is 

sufficient f o r  the purpose he re  to note that turning is done at maximum CL / C D  to 

Y = 0 and P unspecified bottom of the trajzctory and then a t  non-maximum CL/CD to 
meet the final specified value of y f o r  maximum range in the Keplerian regime. 

One 

Minimum velocity 

>;c 

0 
Two widely different maximum range t ra jector ies  have been identified. 

an equilibrium glide, the other a Keplerian f r ee - f a l l  connected with aerodominated 
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skips. 

resul ts  of numerical  computation. 

It i s  interesting to note both types of trajectories have been reported as the 
(75, 81) 

5.5.4 Maximum Range in Near Sonic Flight 

A problem of interest  f o r  a vehicle, in sonic flight, &tempting to obtain a 
landing site, i s  the maximum range problem. 

2 flight path angle sonic flight or f o r p  = O(l),v = O ( ~ l y  = O(€) in nondimensional form, 
a r e  (Section 2 .  10). 

The dynamic equations for small  

(5. 5. 4-1) 

2 o r  eliminating pv , they may be written simply a s  

(5. 5. 4-2) 

The range equation is 

ae - =Ar (5. 5.4-3) 
d t  

The optimal control problem could be formulated, but it is completely avoided by 

eliminating the independent variable in the usual manner, vis.  

(5 .5 .4-4)  

Thus for  small  flight path angle the maximum range for a given loss of velocity i s  

obtained by maintaining the maximum CL/CD.  

range is then 

The expression f o r  the maximum 

(5. 5.4-5) 

1 - 
A s  the vehicle will decelerate f rom velocities order  E 

range covered in this regime is order E .  

t raversed in the hypersonic regime. 

to velocities order  E ,  the 

This is order  E smaller than the ranges 

5 . 6  The Minimum Heating Problem 

5.6. 1 Introduction 
A vehicle attempting to establish a satellite orbit, o r  land, may enter a 
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planetary atmosphere to lose pa r t  of its kinetic energy. 

type of flight path is to minimize the portion of the kinetic energy that is t r ans fe r r ed  

to the vehicle in the form of heat. Some general  observations about the s t ructure  of 

the problem, not widely understood, can easily be made. 

A natural  objective of this 

The heating r a t e  may be expressed in the general  fo rm (see Appendix F) 

The r a t e  of change of the vehicle's energy with t ime is, 

(5. 6. 1-1) 

d t  (5. 6. 1-2) 

The rate  of change of vehicle energy with energy absorbed is then, for  h = O(E), 

o r  to lowest o rde r  in E 

(5. 6. 1-3) 

F o r  a fixed change in kinetic energy, the energy absorbed by the vehicle is 

only a function of the density profile of the trajectory (if i # l) , thevalue of (C,/CQ) 

and the value of i. 

sidered ( see  Appendix F). F o r  convective heating iz 

i E 2 . 
t ra jector ies  a r e  associated with large p and minimum radiation heating is associ-  

3 
ated with small  p. 

radiative heating, the radiation heating occurs a t  high velocities, and the convective 

Some investigators (8 '  9 6 ) ,  have suggested a value of i = 1 for both total convective 

The value of i is determined by the type of heating being con- 
1 and for  radiative heating 

3 :: By inspection of Eq. (5. 6. 1-3) it is seen that minimum convective heating 

As the values of j a r e  and 10 respectively, f o r  convective and 

* 
heating and radiation heating. If this is the case,  the trajectory is insensitive to 
the density-velocity profile and the optimum value of CD/CQ is i t 's  largest  value 

f o r  the complete trajectory.  Even values of i suggested above, seem to offer so 
little density pay-off that typical minimum heating t ra jector ies  spend much of their  
t ime at nea r  maximum CD/C (See Ref. (76) .  Q' 
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. 

heating occurs a t  lower velocities. 

ter ized by a high-altitude-high-velocity minimum radiation heating phase followed 

by a lower velocity low altitude minimum convective heating phase. 

Thus, a minimum heating t ra jectory is charac-  

In the low altitude phase aerodynamic load factors  a r e  quite high, (order  

1 / E )  so that load factor constraints must be considered. 
is t ic  minimum heating t ra jector ies  analytically the most  difficult to t reat .  

These factors  make real-  
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CHAPTERVI 

GUIDANCE TECHNIQUES 

6. 1 Introduction 

In the preceding chapters we have dealt extensively with a procedure for  ob-  

taining a uniformly valid analytic approximation to flight t ra jector ies .  A s  guidance 

applications represent one of the most stringent uses of such solutions, it is appro- 
priate that methods of implementation be discussed. 

It is significant to observe that the major advantage of using an asymptotic 

expansion for  guidance applications is that one obtains an analytical solution whose 

accuracy is both uniform and estimatable. This, hopefully, precludes the extensive 

numerical  investigation commonly made to estimate the accuracy of analytical Solu- 

tions obtained in a l e s s  systematic fashion. 

the guidance system necessary to cope with regions of poor accuracy. 

It should also reduce the tailoring of 

It is important to point out that the rnethod of systematic approximation pre-  

sented he re  does not always reduce the dynamic equations to a set  tractable for  

analytical integration. 

sible with higher approximation and thus more accurate  solutions expressed in t e r m  

of these numerical  solutions. In this case,  one has lost the advantage of analytical 

expressions f o r  the lowest order  solution but retained the option of obtaining a solu- 

tion of a prescribed degree of accuracy,perhaps in a simpler form than a raw inte- 

g ration of the t r a j  ecto r y  . 

But numerical integration of the reduced set  is always pos- 

Independent of whether one chooses to handle these analytically difficult por- 

tions of the trajectory in this o r  more conventional methods (for example, a least  

squares f i t ) ,  they may be matched o r  patched to the portions of a trajectory for  

which one obtains analytical asymptotic expansions. 

sent a relativc!jr sirLp?e z ~ d  a c c l ~ r z t e  methnd of describing a complete flight trajec- 

tory.  

6 . 2  Explicit Guidance Schemes 

The combination should repre- 

(87) 

The most obvious way to use an analytical solution in a guidance scheme is 

to explicitly compute the control necessary to take the vehicle to i ts  desired objec- 

tive. F o r  example,if the state of a system is described by the differential equation 
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(6 .  2-1) 

where a f i r s t  approximation 

is valid. Then if a solution to Eq. (6. 2 - 2) is given by 

( 6 .  2 - 2 )  
, 

( 6 .  2 - 3 )  

where the control u ( t )  was chosen to satisfy some objective and x is final -f 

It is c lear  that this 

- 
value of the state at time tf, then Eq. ( 6 .  2-3) represents  an expression for the con- 

t rol ,  given the current and final values of the state and t ime. 

control mi s ses  the final state with an e r r o r  that is order  E ,  if the control is only 

computed once, as a {unction of the initial state.  

if the control is continually computed as a function of the current state.  

putation is complex, it may be avoided by computing instead the control necessary 

to "fly" the vehicle down the approximate solution. 

solution, Eq. (6.  2-2) is substituted into the original differential equation, Eq.(6. 2- l), 

the following equation results:  

But the e r r o r  is arbitari ly sma l l  

If this com- 

Specifically, i f  the approximate 

(6.  2-4) 

This is an algebraic expression fo r  the u ( t )  as a function of the current state.  

important to observe that the control computed in this manner is often not realizable. 

This s imply  states that the vehicle cannot fly the approximate trajectory with i ts  

r e a l  control. 

It is 

The previous method does not have the deficiency. 

All of these methods perform somewhat poorly with the addition of uncertain- 

The explicit computation of the control based on the initial value ty into the system. 

of the state not only misses the final state by o rde r  E , but, takes no account of 

initial uncertainties or possible "noise" driving the system away from the final 

state.  

may spend large amounts of control chasing a randomly forced state vector. 

is especially t rue  near the f inal  t ime when the control is invariably missing the 

final state due to random e r r o r s .  

havior is to only allow the control to be calculated for a finite number of sample 

intervals.  

the sluggish behavior of the pre-computed control scheme. 

A continuous computation of control based on current  estimate of the state 
This 

A common method of correcting this errat ic  be- 

This compensates the over control of the continuous control scheme with 
The character  of the 
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noise and the desired accuracy is accounted fo r  by the choice of the sample t imes.  

is to choose the control to 
*< 

A strategy, probably closer to the optimal one, 

dr ive the system to an e r r o r  ellipsoid rather  than a point in state space.  
tive s ize  of the e r r o r  ellipsoid should be chosen to represent the expected uncertain- 

t y  in f inal  state,  conditioned on the current  estimate of the state,  and the character  

of the noise driving the system. 

the final e r r o r  tolerance.  

ledge of the final state is poor and the tolerances a r e  lax but will react rapidly when 

the knowledge of i ts  f inal  state is good and tolerances a r e  tight. 

6 .3  Nominal Guidance Schemes 

The rela- 

The absolute size of the ellipsoid should reflect 

This type of system will react  sluggishly when its  know- 

Normally, analytical solutions a r e  not considered suitable as nominal solu- 

tions for nominal guidance schemes. 

inaccuracies in the nominal solutions may be as large as theerrorsintroduced by 

noise in the system. 

the re  is no systematic method of treating inaccuracies in the nominal solution. 

Because a scheme for computing the solution to an a rb i t r a ry  degree of accuracy has 

been presented, a method of theoretically circumventing this problem is available. 

This is because e r r o r s  introduced by-the 

Though the system noise may be handled in a rational manner,  

The method is basically predicated on analytically computing the nominal 

t ra jectory to an accuracy higher than is required fo r  the system performance. 

practical  execution of such a computation may prove overly complex; but it offers 
the hope of being able to  compute nominal trajectories in flight. This would remove 

one of severest  restrictions on the use of this type of guidance scheme, their  inflex- 

ible dependence on precomputed trajectories.  

guidance philosophy follows: 

ticularly elegant, if somewhat artificial statement. ( 7 8 r  99) It is only necessary 

that this statement be placed in a context suitable for use here .  

l inear system 

The 

A detailed example of this nominal 

Nominal guidance schemes, as based on linear regulator theory, have a p a r -  

Consider the non- 

with a valid first approximation, 

and its solution, 

(6. 3-1) 

( 6 .  3 - 2 )  

& -r 

The problem of optimal control of a nonlinear system in the presence of noise has  
a rigorous formulation, but unfortunately few solutions. See Refs. (88, 89). 
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(6. 3 - 3 )  

f 
written in t e r m s  of the desired final state,  x -f ' 

The next approximation is  

a t  the final t ime,  t 

where the control, 2 ,  is assumed to deviate f rom u(O) by an amount - 
6 2 ,  which is order E .  

white noise, ~ ( t ) .  

It is a lso assumed that the system is driven with order  E 

The mean and covariance of the noise a r e  assumed to be 

(6. 3-5) 

The difficulty that occurs  in the application of l inear regulator theory is 

, ?(')), and thus - x ( l ) .  A ze ro  ( 0) associated with the non-zero mean value of g(x 
mean state variable may be obtained by simply realizing that the effect of &(x 
on the system is computable. 

noise and variation in the control a r e  not included. 

the l inear equation 

(0) (0 ) )  
,E 

In fact, it is %he normal  second approximation when 

It is given a s  the solution to 

(6. 3-  6)  

/ 

Subject to the boundary condition, x ( ' ) ( t  ) = 0 ,  this solution can be written explicitly 

as 
f - 

( 6 .  3 - 7 )  

where 
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A zero  mean state variable is  then 

which clearly satisfies the linear differential equation, 

/ 

(6.  3-8) 

(6. 3-9)  

To conform to a standard notation, the following matr ices  have been introduced: 

The covariance of 6 x  will be indicated by P ( t )  - 

(6 .  3 -  10) 

(6. 3- 11) 

where i ts  initial value P is presumed known. It i s  now only necessary to 
0 

proceed with a straightforward statement of linear regulator theory. 

A measurement of 6 2 ,  dz ,  is assumed to be related to 6 x  and corrupted - - 
with white noise, v. - 

(6 .  3-12) 

1 
The noise, v (t), i s  assumed to have zero mean and covariance, R(t)  6 (t -t ) and to 

be correlated withw(t), 
- 

(6.  3-13) 

E c ( i \ T ~  = Hit) tct-kj 
The control 6: is picked to minimize the expected value of a quadratic cost 

function, 
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I 

(6 .  3-14) 

To determine this optimal control 6: one must first f o r m  a minimum variance 

(maximum likelihood) estimate of the state,  6 5 ,  given by the Kolman-Busey, 

Battin, (17) Gauss (91’ 9 7 ) ,  Fi l t e r  

(90 )  

where 

(6. 3-16) 

Then the optimal control, 6 u ,  is linearly related to this estimate of the state,  6 X, 

by a l inear t ime varying gain, 
- - 

where the gain m a t r i x ,  C(t) is given by the solution of the deterministic 

state regulator problem 

(6.  3-18) 

In the flight dynamic problems considered he re ,  the noise driving the s y s -  

t em is usually correlated. 
atmospheric density. 

noise only requires that the l inear system be augmented by the addition of a shaping 

This corresponds predominantly to uncertainties in 

The extension of the preceding formulation to correlated 

fi l ter  driven by white noise. This has  been treated by B r y ~ o n ‘ ~ ~ )  and Deyst. (92) 
In some case,  a quadratic cost  function s e e m s  inadequate. Specifically, in 

hypervelocity flight problems velocity lost during turning is related to the absolute 
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value of the turning angle. 

linear regular problem with nonquadratic cost  functions. 

Pot ter  and Deyst (34) and Wonharn(88) have treated the 

Thus, this theory with the included capability to handle correlated noise and 

nonquadratic cost function seems  capable of handling a large class  of problems en- 

counted in the guidance of a hypervelocity flight vehicles about the nominal path. 

The small contribution made he re  is to show how uniformly valid analytical expan- 

sion can be rationally used with this theory. This offers the possibility of analyti- 

cally stored nominal t ra jector ies  with the associated versatility usually ascr ibed 

only to explicit guidance techniques. 
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CHAPTER VI1 

CONCLUSIONS AND RECOMMENDATIONS 

7 . 1  Summary 

This thesis has applied the method of matched asymptotic expansions to the 

problem of analytically describing flight t ra jector ies .  The dominant emphasis has  

been directed toward t ra jector ies  of the hypervelocity o r  atmospheric entry class .  

New and previously known analytical solutions f o r  flight t ra jector ies  have been pro- 

duced in one systematic procedurethat is capable of identifying their  region of val- 

idity, proceeding to higher order  more accurate  solutions, and combining these 

solutions to obtain expressions valid over s eve ra l  regions of interest .  
Specifically, the region of validity of all first approximations to the flight 

dynamic equations have been carefully identified. 

Eggers(*' 9)Chapman(4), Shen(28), Lees (7) and Arthur(' ')  have all been shown to 

The analyses of Allen and 

be rational approximations within this context. 

acy has thus been established. 

extended to higher order  has  been demonstrated. 
has  been shown to be a multiple regime "first order"  approximation that could be 

corrected to a rational lowest order solution. 

Their region of validity and accu r -  

The systematic procedure by which they may be 

Loh's It second order"  solution 

Two expansions have been matched to produce a composite expansion valid 
fo r  a currently interesting class  of lifting t ra jector ies .  Numerical resul ts  have 

been presented showing that this expansion is in excellent agreement with exact 
integration, f o r  the types of trajectories for which it is presumed valid. 

posite expansion is thereby illustrated to be relatively simple analytical solutions 
with predictable accuracy and range of validity; a resul t  of considerable importance 

for guidance applications. 

A com- 

The three-dimensional problem of thrusting flight in a rotating atmosphere 
surrounding a n  oblate planet has  been treated,  

flight in a non-rotating atmosphere surrounding a spherically symmetric planet has  . 

-been shown to be systematically imbedded in this l a rge r  three dimensional problem. 

The problem of two-dimensional 

Simple but v a  1 i d  models fo r  optimal fl ighttrajectory problems have 
been introduced. 

ity lost problems have been worked. 

these problems 

An optimal plane change, some d u r n  range and minimum veloc- 

Observations concerning the st ructure  of 

and the minimum heating problem have been made. 
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Methods of incorporating uniformly valid asymptotic expansions in guidance 

xhemes have been suggested. Specifically, the advantages of uniformly valid solu- 

tions have been presented and methodsof performing both explicit and linear nominal 

guidance with these solutions have been demonstrated. 

7 .  2 Recommendation for  Future  Study .- 

Only a small fruition of the potential application of the method to the flight dy- 

namic problem have been made in this work. 

practical  and important effects of rotation atmosphere and planetary oblateness, 

?.wait computation in a l l  flight regimes.  

order  solutions, for the numerous regimes of flight, awaits completion. 

Higher o rde r  solutions, including the 

Matching of both lower and these higher 

Analytic computation of optimal t ra jector ies  is difficult, due to the general  

non-integrability of the adjoint equation, except in a piecewise fashion , But inter-  

pretation of numerical results, in t e r m s  of models produced in this context, s eem 
both fruitful and useful. 

interpretation. 
A host of numerical  optimal t ra jector ies  await such simple 

Application to guidance problems seem the most promising. This technique 
offers  the possibility of formulating analytical guidance schemes for which accuracy 

and range of validity can be estimated and extended. 

application, though complex, is straightforward and holds the promise of excellent 
resul ts .  

P r e c i s e  tailoring to specific 

A closely related topic is the utilization of lowest order  analytical solutions 

in numerical  integrating techniques of either a variation of parameters  o r  Encke 

type. 
for  numerically difficult hypervelocity flight t ra jector ies .  

Such an implementation would certainly produce fast  and accurate  integration 

Other perturbation techniques a r e  available, specifically, the method of 

multiple scale .  

for  which matched asymptotic expansions seems  particularly poorly suited. 

7 . 3  Conclusions 

It is  capable of handling a whole class  of oscillatory t ra jector ies  

In identifying the significant contribution of this thesis,  it would be presump- 
tious of the author to claim ultimate originality f o r  much of i ts  contents. Certainly, 

mos t  of the observations about the flight dynamic problem made he re ,  have occur-  

red to many investigators before. But scarcely,  if  ever ,  have so many results 

been the output of a single investigation. 

skill of the investigator but ra ther  to the efficiency of a systematic mathematical  

technique not previously applied in flight mechanics. The major  contribution of 

this thesis is then the demonstration of the usefulness of the method of matched 

asymptotic expansions to problems in hypervelocity flight mechanics. 

This can in no sense be attributed to the 

It is the opiii- 
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ion of the author that this thesis only initiated investigation in an a r e a  where both 

significant amounts of useful and interesting results remain to be obtained, and an 

efficient technique for the production of these results is currently available. 

- 127 - 



PRECEDING PAGE BLANK NOT FILMED. 

APPENDLX A 

VECTOR MATRIX ANALYSIS 

A .  1 Vector  Different ia l  Equations 

A set of n nonlinear equations may be conveniently represented  in vec tor  
>x 

f o r m  as 

(A. 1 - 1) 

with a solution 

(A. 1-2) 

where  x are ini t ia l  conditions given at some  t ime  t Note that a "var ia -  -0 0' 

t ional  equation" governing small per turbat ions 

tial equation may be wr i t ten  a s  
about some  solution to the differen- 

(A. 1-3) 

a l  
where  - is a n  n x n mat r ix  of t ime varying coefficients evaluated along 

a x  - lx - 
the given solution. The  solution to Eq. (A. 1-3) m a y  be wri t ten in t e r m s  of a t r an -  

sition mat r ix ,  @ (t, t ) a s  
0 

where  @ (t,  t ) sa t i s f ies  the equation 
0 

(A. 1-4) 

(A. 1 - 5) 

*Notice that  time may always be a r t i f icany  introduced intof (2) with the equation 
;h = 1. This  is the approach that wi l l  be consistantly used h e r e .  
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and 

(A. 1-6) 

If the solution to the original nonlinear equation is  known in analytical fo rm 

then the transition matr ix  m a y  be obtained directly.  If x = x (x t ,  t ) is the 

solution, then 
- - -0' 0 

6% = $ 5 ,  (A.  1-7) 

Comparing (A. 1-4) with (A. 1-7) reveals that 

The adjoint s e t  of equations f o r  (A, 1 - 3 )  a r e  

which have the convenient 'property that 

o r  

Using this relation between t and t 
0' 

and the propagation relation f o r  6 2 ,  Eq. (A. 1-4) 

(A. 1-8) 

(A. 1-9) 

(A .  1-10) 

(A.  1 - 11) 

(A.  1-12) 

(A.  1-13) 

(A.  1-14) . 
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‘. 

which must be valid for arbitrary, 6 2  (t,), so  

(A. 1-15)  
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APPENDIX B 

OPTIMAL CONTROL THEORY" 

B. 1 The Necessary Conditions of the Pontryagin Minimum Principle 

Given a system of differential equations with control 2 

(B.  1-1) 

that has a cost  component x 
assume  the re  exists some control u (t) over the interval of t ime to to tf that mini- 

mizes  the cost  x Any nonoptimum control, u(t) ,  applied over 

a vanishingly small  interval of time A t  must produce a perturbation away f r o m  tra- 

jectory given by 

as the f i r s t  component of the s ta te  vector 2. Then 
:: 0 

- 
a t  the final time, tf.  

0 

(B.  1-2) 

The perturbation a t  the final t ime caused by any admissible control of o r  a per tur-  

bation of the final time must lie on o r  above a hyperplane passing through the final 

state (see Fig.  B. 1). If this were not so, the controls producing the two perturba- 

tions lying on both sides of the hyperplane could be combined to produce a trajectory 

meeting the required boundary condition with lower cost. This condition may be 

analyticallyrepresented by requiring the normal  to the hyperplanerh - (tf),and the per-  

turbation a t  t 
I 

6x (tf) have the relation, f '  - 

(B. 1-3) 

A positive o r  ze ro  scalar  product, 

(if the hyperplane is Ifvertical"). 

Notice the X has  the possibility of being ze ro  
0 

Otherwise, it may be normalized to -1. 

If X (t) is chosen to satisfy the equation, - 
:: 
A complete treatment of the ideas presented in this Appendix,together with m o r e  

information about optimal control theory and optimal flight t ra jector ies ,  may  be 
found in the following Refs.: (55,44, 56, 47, 19, 20, 21, 27 ,  54, 60, 60,74, 76, 78, 81, 86) 
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cost 
compound 
of the 
state 
vector 

(normal to 
hyperplane 
at the final 
time) 

6 x (tf) (possible perturbation 
in the state at the 
final time) 

a target set 
tangent to hype 

x*(t,) (final state 
of optimal 
trajectory ) 

hyperplane projection 1 (Perturbation below 
hyperplane impossible, 
could be combined 

rplane 

with perturbation 
above plane to 
reduce cost and 
meet boundary condition) 

xi 
Any other component of the state vector 

Fig B. I Schematic Representation of the Minimum Principle 
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(B. 1-4) 

then frorii Eqs.  (A. 1-11), (B. 1-2) and (B. 1-3),  

Then by defining a Hamiltonian, H, as 

(B. 1-6) 

8 *C and by choosing, H (X (t ) ,  u*(tf), 1 (ti ) = 0 if  A tf # 0,  then one has  the mini- 
f -  

mum principle 

(B. 1-7) 

Or  that H evaluated along the optimal trajectory must be a minimum with respect 

to the control. 

get set,or a perturbation that satisfied the bounda.ry conditions to f i r s t  order  would 

be below the hyperplane. 

It is noted he re  that A (t ) must be normal  (transversal)  to any t a r -  - f  

A particularly useful interpretation of this condition is in t e r m s  of a 

Euclidian norm in an n-dimensional space. Note f (x, u )  can be considered an n-di- 

mensional mapping of the m-dimensional control 2. Then requiring that 

H = X 
control that gives the minimumf (2 , 2) projection on X ( t ) .  

- - -  
T g 

( t ) r ( x  , E) be a minimum with respect to - u is equivalent to requiring the 
:: - 

See F i g .  B. 2. 

To motivate the naming of the Hamiltonian note that the system equations 

and the adjoint equations, Eqs.  (B. 1-1) and (B. 1-4) may  be written as 

(B. 1-8) 

- f 3 5  - 



which a r e  Hamilton equations of c lass ical  mechanics. 
Fu r the r  to show that H is a constant fo r  constant bounded control s e t s ,  note 

(B. 1-9) 

The f i r s t  two t e r m s  cancel each other by use of Eqs.  (B. 1-8) and the last  t e r m  is 

identically zero by application of the minimum principle unless the bounds on the 

control s e t  a r e  functions of t ime. 

f 
(not necessarily 
continuous function of y) 

Fig B. 2 Geometric Interpretation of the Minimum Principle 
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APPENDIX C 

THE METHOD O F  MATCHED ASYMPTOTIC EXPANSIONS 

The method of matched asymptotic expansions is a powerful perturbation 

technique of applied mathematics. 

which is in i ts  infancy(3' 5), and more in the host of problems it has  successfully 

Its strength l ies l e s s  in i ts  rigorous formulation, 

handled 4* 6 r  1 2 J  3 2 9  57* 61* 649 66* 67* 70). A ra ther  limited description of the tech- 

nique will be presented that will suffice to describe the applications made of i t  in 

this thesis.  

is r e fe r r ed  to Van Dyke 

F o r  an elaborate and enlightening t reatment  of the method the r eade r  
(1) . 

c. 1 A Straight Forward Perturbation ExDansion 

Given an ordinary differential equation in which a small parameter ,  E ,  
appears,  for example: 

(C. 1-1) 

where both the independent variable,  t ,  and the dependent variables,  x are - 
of o rde r  one. 

this equation is produced by assuming that 5 can be represented as a power se r i e s  

in E :  

Then a straight forward perturbation expansion for  the solution of 

(C. 1-2) 

The new dependent variables, x ( ~ )  a r e  then assumed to satisfy a l a rge r  set  
- ( t )  

of equations created by substituting the se r i e s ,  Eq. (C. 1-Z), into the original dif- 
ferential  equation, Eq. (C.  l- l) ,and equating t e r m s  multiplied by equal o r d e r s  of E, 

specifically: 

Expanding the right hand t e r m s  in a Taylor s e r i e s  gives, 
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(C. 1-4) 

It is important to observe that only the lowest o rde r  equation is nonlinear. 

higher o rde r  equations a r e  linear with t ime varying coefficients and forcing func- 

tions. 

All 

In fact  their solution may be written explicity as 

e 

t r  

( C .  1-6) 

where @ (t, t ) is the transition matr ix  f o r  perturbations about the lowest 
0 
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th o rde r  solution and h(n)  represents the forcing t e r m s  that appear in the n- o rde r  
perturbation equation. It is seen h(n) depends on the solution to the lower o rde r  

equations. Explicity, 

- ( t )  

- (t)  

(C. 1-7) 

Also, it has been shown Eq. (A. 1-8), that the transition matr ix  may be writ tenin 

t e r m s  of the solution to the lowest o rde r  differential equation as 

(C. 1-8) 

so if the lowest order  nonlinear problem is explicity integrable,then Eq. (C. 1-6) is 
N the explicit solution for  a l l  higher order  perturbations. 

is then given by 
The solution to o rde r  E 

n r o  
(C. 1-9) 

It is important to observe that non-uniformities can occur in this straightforward 

perturbation expansion. A classical  example of such a non-uniformity is when E 

multiplies one of the deriviatives in the differential equations, Eq. (C.  1-1). The 

o rde r  of the differential equations is then reduced by one and arbi tary initial con- 

ditions can no longer be met.  

initial conditions a r e  to be imposed must  be sought. 

manifest themselves in this simple fashion. They a r e  usually associated with an 

unbounded t e r m  in the differential equations that occurs  for specific values of the 

equation variables.  Similar unbounded t e r m s  usually occur in the expansions for 

the solutions, though not necessarily in the lowest o rde r  t e rm.  When such a non- 

uniformity exists,  the expansion is presumed invalid in the neighborhood of the non 

uniformity and another expansion, valid in this region, must  be sought. 

when no single expansion is validthrough the field of interest ,  the problem is  

called a singular perturbation problem. The process  of seeking another expansion 

valid in the region of a non-uniformity is generally accomplished by a rescaling of 
the variables to a variable m o r e  characterist ic of the region of the non-uniformity. 

This process  will now be described. 

Another expansion valid in the region where the 

Other non-uniformities do not 

Generally, 

C.  2 Scaling of the Variable 

It is important to observe that the fo rm of a non-linear differential equation 

in which a small parameter  appears is in no sense permanent. 
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Spec if  i c a lly , given a nonlinear differential equation with a sma l l  pa rame te r  

(C. 2-1) 

i t  is possible to transform this equation into another equation in t e r m s  of the new 

variables,  5 (tL) and t 2  

(C.  2-2) 

by simply rescaling the variables.  Let x and t l  be related to x and t 2  by 
1j 2j 

n .  n 
where E and E a r e  arbi tary powers of the small  parameter  s a n d  c ,  c .  

J 
a r e  a rb i t r a ry  constants. Then if x1  and t l  a r e  assumed to be of o rde r  one, the new 

variables,  x and t a r e  presumed to describe length scales  and t ime scales o rde r  

e J and respectively. Eq. (C.  2-2) lowest o rde r  approximation 

2j 2 n n 

(C.  2-4) 

is presumed to be valid f i r s t  approximation to the system of differential equations, 

Eq. (C.  2-1) when x "t t c .  is o rde r  E n j  and t t c is o rde r  E . 
l j  J 

It is apparent that a particular nonlinear system may have many such f i r s t  

approximations. 

possible f irst  approximations. 

region in which the correct  lowest order  approximation has  been used. 

C. 3 The Matching Principle - 

The approach taken he re  will be to systematically exhaust a l l  

An expansion will then only bepresumed valid in a 

Given two fo rms  of the same differential equation, for  example, 

(C. 3-1) 
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n .  n 
and E where the two equations a r e  related by a scaling E of one o r  m o r e  

of the variables,  x and t s 

(C. 3 - 2 )  ' 

and two different straightforward perturbation expansions f o r  the two equations 

(C. 3-3) 

complete to o r d e r  E 

some common region of validity (see Ref. (3 ) ) ,  a n  "overlap domain". Say, for  

example, where 

and E respectively, i t  is possible that the expansions have 

(C. 3-4) 

If such a domain exists,  then the two expansions must have the same algebraic fo rm 

in this domain. 

t then when 

So, if the two expansions a r e  written in the same variable x1 and 

(C. 3-4) 

the expansions should agree to each power in E .  

matching principle of Kaplan and L a g e r ~ t r o m ' ~ )  that will generally be used he re .  

Van Dyke") has expressed this principle in the following l e s s  intuitive but m o r e  

f o r m a l  statement: 

This is  the form of the asymptotic 

"The M- te rm f i r s t  expansion of (the N-term second expansion) 

= the N-term second expansion of (the M-term first expansion)" 

Here,  N and M a r e  two integers either equal o r  different by one. 

M- te rm first expansion of (the N-term second expansion) is found by rewriting the 

N-term second expansion in t e r m s  of the first expansion variables,  expanding 

By definition, the 
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asymptotically f o r  smal l  E ,  and truncating the resul t  to M t e r m s .  

second expansion of (the M-term f i r s t  expansion) is s imilar ly  defined. 

The N-term 

Symbolically, the matching principle will be indicated a s :  

(C. 3 - 5 )  

where 

dropped when 

for convenience the brackets and superscr ipts  will normally be 

only doing matching to lowest few o rde r s .  

C. 4 A Composite Expansion 
A composite expansion is defined as any s e r i e s  that reduces to the f i r s t  

expansion when expanded asymptotically f o r  sma l l  E in the f i r s t  variables,  and to 

the second expansion when expanded asymptotically for  small E in the second var i -  

ables. The existence of such a composite expansion is seen to avoid the awkward 

practical  question of when to switch from one expansion to another when traversing 

f r o m  one region to another. As the two expansions a r e  assumed to have a common 

region of validity, one method of forming a composite expansion is to add the two 

expansions and subtract their  common part .  

correct  to E 

determined by inspection, o r  as the M-term first expansion of (the N-term second 

expansion), then a composite expansion valid to E in region one and to E in 

region two is, 

Specifically, if  the two expansions, 

and EN, a r e  xlM and x: respectively, and their  common part  is 

(C. 4- 1) 

o r ,  

(C.  4-2) 

C. 5 An Expansion Procedure for Optimal Control Problems 

The procedure described in the preceding sections for  obtaining the solution 

to a nonlinear problem in which a small parameter  appears  applies equally well to 

the set  of system and adjoint equations encountered in optimal control problems 

(See Appendix B) . Consider, for  example, the dynamic system described by the 

equation, 
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The assoc ia ted  Hamiltonian i s  

and the adjoint equations a r e  

(C. 5-2) 

( C .  5 - 3 )  

Expanding both x and 1 in the following f o r m  - 

Then substituting into Eq. (C.  5-1) and Eq. (C. 5 - 3 )  and equating equal coefficients 

of E yields  a familiar sequence for  the sys t em equations 

( C .  5-5) 

or  
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(C. 5-7) 

I 

The equivalent expression f o r  the Hamiltonian S 

c 

( C .  5-8) 

Notice that  if  the problem is to be calculated to o r d e r  E that  the control  that  min i -  
m i z e s  H to o rde r  E may be de te rmined  in t e r m s  of X (') , - A ( 1 ) ,  - x(')and - x ( l ) .  So, in  

pr inciple  the 

Unfortunately, the express ions  even to o r d e r  E are  ex t remely  complex. 

'If opt imal  control"  may  be calculated.  This  is t r u e  to any o r d e r  i n €  

F o r  problems where  only lowest o r d e r  r e su l t s  a r e  des i r ed ,  the n e c e s s a r y  

conditions may  be eas i ly  produced by wri t ing the Hamiltonian and adjoint equations 

assoc ia ted  with a lowest o r d e r  model  of the sys t em.  

est o r d e r  approximation to  the dynamic equations.  
t r ea t ed  as though they w e r e  exact ,  with the res t r ic t ion ,  of cour se ,  that  the r e su l t s  

wi l l  only be accura te  to lowest o r d e r .  

Chapter  V ,  toprec ludeoverbear ing  a lgebra ic  complexity.  

This  model  is s imply the low- 

These  equations m a y  then be 

This  approach is consis tent ly  taken in 

F ina l ly ,  mult iple  expansions can and mus t  be matched ,  a s  a single opt imal  
This  has  the t r a j ec to ry  normally t r a v e r s e s  s e v e r a l  regions of expansion validity.  

d i s tas te fu l  aspect  of solving the two point boundary value problem assoc ia ted  with 
the opt imal  t ra jec tory  with mult iple  matching conditions ir, between. For tuna te ly ,  

if one i s  willing to  se t t le  fo r  gene ra l  information about the t r a j ec to ry  shor t  of 
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detai led numer ica l  r e su l t s ,  the simplified dynamic sys t ems  often admit  so few 

opt imal  t r a j ec to r i e s  that  a general  descr ipt ion of the composi te  t ra jec tory  is poss i -  

ble ,  without the benefit of the detailed matching. 

descr ip t ions  is the p r i m a r y  objective of Chapter V .  
The generat ion of these  s imple  
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APPENDIX D 

PLANETARY CRAW TATIONAL FIELD 

D. 1 The Gravitational Potential 

The gravitational field of any planet may be expressed as the negative gradi-  

ent of a potential, V ,  expressed in spherical harmonics as 

(D. 1-1) 

where G is the universal gravitational constant, M is the planetary mass ,  
r is the equatorial radius,  J is the second spherical  harmonic coefficient, L is 

the latitude, and r is the radius vector in a planet centered spherical  coordinate 

system. 

inverse r field associated with a spherically symmetr ic  body and the second spheri-  

c a l  harmonic,which basically accounts for  the planet's oblate m a s s  attraction. 

0 2 

- 
Only the f i r s t  two t e r m s  in the s e r i e s  have been retained. These a r e  the 

If the g vector is desired in a rotating coordinate system, a slightly differ- 

ent potential must be used. This accounts for both the gravitational attraction and 

the centripetal  acceleration of a point rotating with the planet-fixed coordinate s y s -  

t em,  

(D. 1-2) 

where n is the planet's rotation rate .  

These relations will suffice to define the gravitational field to the extent 

that will be needed here .  
o r a t e  representation of the gravitational field, the reader is referred to Refs. (41, 

16, and 85). 

F o r  an explanation of these expressions and a m o r e  elab- 
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APPENDIX E 

.b 

ATMOSPHERIC PROPERTIES-'. 

E.  1 Equation of State of the G a s  

F o r  relatively low density gases that compose most atmospheres,  the equa- 
tion of state may be written as 

(E.  1-1) 

- 
where p is the pressure,  p the density, T the temperature,  R the gas con- 

stant and 

E. 2 The Hydrostatic Equation 

is the molecular weight of the well mixed g a s .  

It one neglects the ver t ical  component of the wind velocity, convervation of 

mememtum in the g direction will give 

(E. 1-2) 

where h is presumed measured along g ,  and g is the gravitational acceler-  

ation in the planets'  rotating coordinate system. 

f r o m  the hydrostatic equation by using Eq. (E. 1-1). 

The density may be eliminated 

(E. 1-3) 

Given a temperature  distribution T = T ( r ) ,  this differential equation may  be solved - 

Notice that the quantity, 

8 

has  units of inver 

e 

e h  

f o r  p = p(h) and Eq. (E. 1-1) will specify p(h). 

> i r  ight. It is convenient roduce it as an inverse atmos- 

pheric  scale height. With this substitution, Eq. (E. 1-3) is 

:: 
F o r  a more  adequate treatment of planetary atmospheres s e e  Refs. (15, 16 and 83) .  
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o r  (E. 1-4) 

This s e rves  to define p, and thus the p, variation along the g vector fo r  a r ea l  at- 

mosphere.  

phe r ic prop e r t  ie s 

It only remains to describe g = g ( r )  to completely define the atmos- 

and (E. 1-5) 

f = 

. 
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APPENDIX F 

AERODYNAMIC FORCES AND HEATING” 

F. 1 Hypersonic Lif t -Drag Data 

In hypersonic  flight the lift and d rag  coefficients a r e  not strongly Mach num- 

dependent. 

in terms of a Newtonian d rag  polar  of the fo rm,  

The interrelat ion of CL and CD for  high CL/CD vehicles  be expressed  

(F. 1-1) 

where  CY is the angle  of attack and C D o ,  CDL and C a r e  constants .  At 
LO 

small C Y ,  these  relat ions simplify to 

(F. 1-2) 

F o r  vehicles  with low L / D ,  re la t ions of the following f o r m s  a r e  valid: 

(F. 1-3) 

where  k is a constant with value n e a r  one. 

F. 2 Free  Stream Energy  F lux  

The  f ree  stream energy flux, qo, of the gas  flowing by the vehicle i s ,  

(F. 2-1) 

:$Justification fo r  the information that follows together  with an  adequate t rea tment  of 
hypersonic  aerodynamics  may be found in the following Refs .  ( 2 2 ,  23, 31, 47, 49, 
59, 62, 63, 95, 96). 
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Only in f r e e  molecular flow does energy of this o rde r  of magnitude reach the vehi- 

cle.  In other flow regime s there  a r e  blocking effects that have been discussed. It 

is still expected that p and v a r e  the relevant parameters  fo r  expressing heat t r a n s -  

f e r  to the vehicle. In fact, impir ical  relation in t e r m s  of p and v to varying powers 

a r e  available. 

F. 3 Generalized Aerodynamic Effect 

Ambrosio(62) has  suggested that both heating and aerodynamic loading can 

be expressed in the general  fo rm 

(F. 3-1) 

where G is a generalized aerodynamic effect and CG is a dimensional con- 
The value of CG is a function of the vehicle geometry and the planetary a t -  stant. 

mosphere composition. 

composition. 

for earth’s atmosphere. 

The values of i and j a r e  also functions of the atmospheric 

For  comparison, it will be convenient to express  the known values 

Generalized Elfect: 

Deceleration 

cG i 

1.0 1 . 0  1 .0  

Stagnation Convec- -1 
tive Heating Rate e, .5 1 . 5  . 3 3 3  

3L au Stagnation Radiation 
Heat Rate 1 . 7  10. 6 160 

where RN is the nose radius of the vehicle, KS and K R  a r e  constants, 

(F. 3 - 2 )  

Notice that a large nose radius reduces the convective heating rate ,  but 

The maximum aerodynamic effect occurs when, 
increases  the radiation heating rate .  
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or for constant C when G 

d \h Arq t 

d \ A  p 
- e - -  

1 
(F. 3-4) 
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